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Abstract

Understanding how exporters react to exchange rate shocks is important for evaluating interna-
tional shock transmissions and setting optimal international monetary policy. Empirical studies have
documented substantial heterogeneity in the degree to which different firms and products respond to
exchange rate shocks. In addition, estimates of exchange rate pass through (ERPT) are time varying
and depend on observed and unobserved variables in a nonlinear way. This paper proposes a ma-
chine learning algorithm that systematically detects the determinants of ERPT and estimates ERPT at
the firm level in a large-scale custom dataset. The accuracy of the algorithm is tested on simulated
data from an extended multi-country version of Atkeson and Burstein (2008). Applying the algorithm
to China’s custom data from 2000-2006, this paper estimates the ERPT of China’s exporters and doc-
uments new evidence on the nonlinear relationships among market structures, unit value volatility
and ERPT.

JEL classification: C50, E31, F41, F42
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In the last decade, the increasing availability of large scale firm level datasets has greatly enlarged
the ability to understand firm level heterogeneity and its implications at the aggregate level. Especially
in the literature of ERPT, understanding why firms have different pricing behaviour in response to a
common exchange rate shock has important implications in setting the optimal monetary policy1.

Unlike micro studies in other fields, international trade firm-level datasets recently made available
contain a significant proportion of firms in an economy and almost all custom transactions at firm prod-
uct (8-digit) level in a given period. As the richness and the scale of micro dataset available to researchers
develop rapidly, conventional methods applied extensively by empirical researchers, fixed effects related
methods for example, are either less flexible in their functional assumptions or not very effective in gath-
ering all possible aspects of heterogeneity2 in a large scale dataset. Therefore, these methods may not be
the best option to understand firm-level heterogeneities. Conventional ERPT estimation methods gen-
erate large standard errors when applied at sector/firm level due to unobserved variables, e.g. marginal
cost, heterogeneity in product characteristics and market structures. Empirically, researchers trade off
controlling for unobserved variables against the flexibility of functional forms3.

On the other hand, recent researches in machine learning focus especially on large datasets and het-
erogeneities. It seems to be the natural alternative for trade problems. In spite of successful applications
of these algorithms in various subjects, economists often stay alarmed with the usage of these algorithms
for two reasons. First, a machine learning algorithm often involves extracting maximum amount of in-
formation in a certain dataset and thus the results are often data driven and may not necessarily reflect
the true relationship between variables being studied. Second, a machine learning algorithm may be
good in making predictions but does not identify causal relationships, nor does it enhance our economic
understanding.

For causality, the mainstream empirical papers working with firm-level data take a restrictive ap-
proach. Methods include restricting the dataset so that the subgroup being studied is no longer subject
to omitted variable bias or adding multiple fixed effects such that “irrelevant” and possible confounding
variations can be partitioned out. However, adding restrictions and layers means dropping observa-
tions and losing information4. These restrictions can help us build an “ideal” environment to study the
hypothetical relationship but also limit our vision to a particular hypothetical situation.

Thanks to persistent advocates of applying machine learning methods to Economics5, pioneer works
on adapting machine learning methods to make casual inferences and solve policy problems have made
a significant progress6. However, existing studies work under the condition of unconfoundedness. This

1Seminal contributions include Dornbusch (1987), Corsetti and Pesenti (2005), Corsetti and Dedola (2005), Corsetti, Dedola
and Leduc (2007), Corsetti, Dedola and Leduc (2008a), Corsetti, Dedola and Leduc (2008b), Atkeson and Burstein (2008).

2The ability to search for all possible aspects of heterogeneities is important for predicting the firm-level response to policy
shocks.

3For example, by dividing data into several bins according to destinations, quantiles of market shares, etc.
4Not a problem if obtaining one (aggregate) coefficient is the main concern but costly in understanding firm-level hetero-

geneities.
5See Varian (2014) for an introduction of various machine learning algorithms and how they can be applied to study eco-

nomic questions.
6See Athey and Imbens (2015), Bajari et al. (2015), Chernozhukov, Hansen and Spindler (2015), Kleinberg et al. (2015).

Pioneer works on adapting machine learning methods to make casual inferences include Chernozhukov et al. (2016), Athey,
Tibshirani and Wager (2016), Athey and Imbens (2017), Athey et al. (2017) and Wager and Athey (2017).
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condition will not be satisfied for international trade related problems. The marginal cost of the product
being sold and the prices of competitors are unobserved and endogenous to exchange rate movements.
Estimates ignoring these confounding variables will lead to biased point estimates of individual treat-
ment effects.

This paper follows recent work on making casual inferences and proposes an algorithm specifi-
cally designed to estimate firm-level heterogeneities in response to macro shocks in a multi-dimensional
panel. The proposed algorithm features in two aspects: (a) it uses the high predicting power of the gra-
dient boosting regression tree algorithm (GBRT)7 to construct counterfactual environments; (b) it uses
orthogonal variations across dimensions to control for unobservables. The proposed algorithm con-
tributes to the machine learning literature in its awareness that the monotonic property of tree based
algorithms can be used together with orthogonal variations across dimensions to control for unobserved
components8.

The central idea behind the proposed algorithm is that machine learning algorithms making causal
inferences should be assisted with structural information implied by economic models. Most machine
learning algorithms take an agnostic data driven approach. As in most estimation techniques, adding
correct structural assumptions will increase the precision of estimation. However, how to add economic
assumptions into a machine learning algorithm is still not clear9. This proposed algorithm presents a
novel approach to feed structural information into a tree based machine learning algorithm in a multi-
dimensional panel framework10.

The proposed algorithm is designed to work directly with large scale custom datasets and identify
the ERPT parameter for each exporter in an economy. The algorithm learns from reading records of
trade patterns. It not only predicts export prices and quantities at the firm level conditioning on values
of future environments of aggregate variables but also generates the genetic rules governing the data
generating process11. To assess the performance of the proposed algorithm, I build the following multi-
country trade model.

In order to understand how firms optimally price their products under a multi-sector multi-country
environment, I extend the two-country model of Atkeson and Burstein (2008) to a multi-country frame-
work and introduce heterogeneity in productivity distributions across sectors and countries. The main
features of the model are as follows. First, there are N countries in the world and each country owns S

7GBRT is featured in its power of out-of-sample prediction accuracy due to its ability to capture nonlinearities. GBRT algo-
rithm has been widely applied in frontier studies of a wide range of topics, e.g. global distribution and the risk of dengue [Bhatt
et al. (2013)], effect of climate change [Cox et al. (2013), Randall and Van Woesik (2015)]. The algorithm is proved to be effective
in solving practical classification and prediction problems and has been actively implemented in international computing and
machine learning challenges [For details, click List of Winning Solutions]. An introduction to the GRBT algorithm can be found
in the appendix.

8Most custom datasets have disaggregated and detailed firm level transaction records, but key elements such as the marginal
costs are not observed and are difficult to be estimated even when one can complement the custom database with some industry
surveys.

9In general, the range of structural assumptions is not limited to probabilistic assumptions and could include information on
how variables interact in a structural model. This paper only works on a limited case and shows that adding the log-linearised
version of the structural pricing equation will significantly improve firm level ERPT estimates of the proposed algorithm.

10As I will illustrate in the model section, adding structural information has a marginal effect on the predictive power of the
dependent variable but is critical in getting the correct causal inference.

11For example, how ERPT depends on observed firm level characteristics.
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sectors with heterogeneous productivity distributions. Second, within each sector there are local firms as
well as exporters from other countries competing under Cournot competition with a demand elasticity
structure similar to Atkeson and Burstein (2008). The result of the competition is determined by the pro-
ductivity distribution of the participating firms as well as aggregate variables such as bilateral exchange
rate shocks. Due to the Cournot competition structure, there is no closed form solution for the model12.
I construct counterfactual environments to understand how ERPT differs under different productivity
distributions of local firms and foreign exporters and different compositions of exchange rate shocks.

In terms of macroeconomic modeling, although such a framework may be helpful in understand-
ing the pricing behavior of an exporter facing competition from local competitors and other exporters
from other countries, the need to add extra levels of heterogeneity seems to be less justified. The main
drawback of a micro-founded multi-sector multi-country trade model is the lack of ability to map into
the real world due to its demanding requirement in calibration. In practice, estimating the productivity
distribution for a particular country/sector, provided the existence of good data, is already a challenge13.

However, such highly detailed micro-founded models may have much to offer in an alternative mod-
eling strategy. The procedure is given as follows. First, notice what data are available in reality. Second,
simulate the highly micro founded model with arbitrary calibration. Third, subset the simulated data
and construct a dataset similar to what is observed in the reality. Fourth, write an algorithm or economet-
ric method to estimate key parameters of interest14 for each individual/firm of interest in the constructed
dataset. Fifth, change the parameter value of the model, re-simulate and construct a new dataset. Test the
algorithm’s ability to estimate the key parameter of interest and revise the algorithm if not. Sixth, apply
the algorithm to observed data. If the model is believed to be correct, the estimates from the algorithm
are reliable.

The advantage of this approach is that we will have a structural model that enables us to understand
how the mechanism works and figure out the key variable of interest in reality provided that the model
is correctly specified15. This approach is useful in a scenario where we do not have full information to
estimate the whole model but may have enough information to identify a subset of parameters implied
by the structural model. The proposed approach is similar to the indirect inference approach but differs
in that my proposed approach, particularly steps 4 and 5, puts emphasis on building an algorithm that
provides the correct estimates of interest for all possible calibrations of the micro-founded model. The
indirect inference approach emphasises on finding an auxiliary model such that estimates from the true
model or data are as close as possible to the estimates from the auxiliary model.

The algorithm is proved to be successful in recovering the true ERPT parameter at firm level in the
simulated model and is applied to the custom database of China from 2000-2006. Using this nonpara-
metric approach, my finding confirms that ERPT is a nonlinear function of firm-level characteristics

12A market of N firms would give N simultaneous equations.
13For this particular question of interest, one would need to estimate the productivity distributions for each country in the

world, which is difficult.
14Please note that these parameters are not necessarily the same as the parameters needed for calibration.
15If the model specification is in doubt, an additional loop between step 2 and 5 can be added to evaluate possible alternatives

in model specification. I am still working on the proper way to evaluate and compare different model specifications under my
proposed procedure.
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depending on various measures of market structure. Consistent with theoretical and empirical works,
the relationship between ERPT and several market share measures resembles a U shape16.

The rest of the paper is organised as follows. Section 2 formalises the empirical question. Section 3
introduces the proposed algorithm and explains the mechanism behind it. Section 4 presents the theo-
retical model of ERPT and various exercises for recovering the true ERPT estimates using the proposed
algorithm. Section 5 presents empirical results on China’s custom data. Section 6 concludes.

1 Problem

This section gives a formal presentation of the empirical question that this paper tries to address. In
addition, I construct two-dimensional numerical examples to illustrate how conventional fixed effects
related methods may fail to capture the nonlinear features of ERPT estimates.

The pricing equation of exporters can be presented as follows.

pI = g (eI1 , XI , MI2 , εI )

where I = {i, f , d, t} represents the dimensions along which a variable varies, with i, f , d, t standing
for product, firm, destination and time respectively; the missing variables vary along dimensions that
satisfy I2 ⊂ I and I1 6= I2; g is an unknown function; p is a scalar dependent variable representing the
exporter’s price; e is the key variable of interest, the bilateral nominal exchange rates; X is a vector of
observed feature variables; M is a vector of unobserved variables that correlate with e; ε is an error term
that does not correlate with e. The objective is to understand how changes in exchange rates affect the
exporter’s price conditioning on the set of observed firm level characteristics X, such as various market
share measures, and unobserved variables M that are not varying along all dimensions, such as firm
specific marginal costs.

∂g(.)
∂ed,t

1.1 Conventional approaches in the literature are not informative about the underlying
structure of ERPT

In this subsection, I construct examples to explain why conventional fixed effect methods are not very
informative. In my examples, I restrict my focus to the same exporter selling the same product to differ-
ent destinations d over a certain time period t . For simplicity, I assume a linear process of export prices
pd,t that depends on bilateral exchange rates ed,t, market shares msd,t, and marginal cost of the product
mct. βd,t represents the ERPT coefficient which is assumed to be a nonlinear function of market shares

16Krugman (1986), Dornbusch (1987), Atkeson and Burstein (2008), Melitz and Ottaviano (2008), Chen, Imbs and Scott (2009),
Berman, Martin and Mayer (2012), Amiti, Itskhoki and Konings (2014), Auer and Schoenle (2016)
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and marginal costs.17

pd,t = µ + βd,ted,t + msd,t + mct + εd,t

In constructing the rest of series, I assume simple linear relationships under which all explanatory vari-
ables, ed,t, msd,t and mct, are correlated with each other. Specifically, market shares are constructed to
be linear in a destination time specific factor and nominal exchange rates. Marginal cost is constructed
similarly.

msd,t = ud,t + 0.1ed,t

mct = ut − 0.1et; et :=
∑d ed,t

nd

ed,t ∼N(0, 1), ud,t ∼ uni f orm(0, 1), εd,t ∼ N(0, 0.01)

Next, I simulate the model for three different underlying ERPT functions βd,t and compare results of
applying the standard fixed effect estimator with destination and time fixed effects.

Spec1 : βd,t = (msd,t − 0.5)2 + mct; ut ∼ uni f orm(0, 1)

Spec2 : βd,t = 2(msd,t − 0.5)2 ∗mct; ut ∼ uni f orm(0, 1)

Spec3 : βd,t = 2(msd,t − 0.5)2 ∗mct; ut ∼ N(0, 1)

The objective is to read simulated data records of d, t, pd,t, ed,t, msd,t and estimate the ERPT βd,t. There are
two difficulties in estimating ERPT in this simulated example: (a) the ERPT is not a constant parameter
but an unknown function of firm characteristics; (b) the marginal cost mct is not observed.

Table (1) presents results with each specification being simulated for 2000 destinations18 and 40 time
periods. Columns (1) - (5) resemble the empirical discovery process of the relationship between ERPT
and market shares. The estimated coefficients in column (1) represent a general response of prices to
exchange rates. Column (2) adds market share in levels and finds significant coefficients for both vari-
ables. Columns (3) and (4) try different interaction terms between exchange rates and market share but
no significant result is found. This reflects the main drawback of fully specified structural equations
compared to nonparametric approaches. The rejection of one specification is not informative about the
alternative right specification. If the researcher stops at regression (4), the discovery that ERPT is U
shaped in market share is likely to be delayed.

Even at the correct regression specification column (5)19, results are not very informative about the

17A more realistic model is discussed in section 4.
18In my original experiment, I set this number to be significantly bigger than the number of time periods nT . A more realistic

example where nD = 200 can be found in the appendix.
19Regression (5) is the specification closest to the true data generating process among these three specifications. For example,

specification 1 can be rewritten as follows: pd,t = 10 + ms2
d,ted,t −msd,ted,t + (mct + 0.25)ed,t + msd,t + mct + εd,t where mct =

∑t mct
nT

= 0.5. Coefficient on msd,t is close to the theoretical value of 1. The exchange rate interacting with market share has a
significant coefficient close to -1 and the interaction term with exchange rate squared has a coefficient close to 1. The coefficient
on ed,t is slightly downward biased as the mean of mct equals 0.5, which gives the theoretical value of 0.815.
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Table 1: Estimates from the fixed effect method

(1) (2) (3) (4) (5)

Specification 1: pd,t = µ +
[
(msd,t − 0.5)2 + mct

]
ed,t + msd,t + mct + εd,t

ed,t 0.757*** 0.635*** 0.759*** 0.638*** 0.796***
(0.002) (0.001) (0.003) (0.002) (0.003)

msd,t 1.198*** 1.198*** 0.995***
(0.004) (0.004) (0.005)

ed,t ∗msd,t -0.006 -0.006 -1.019***
(0.006) (0.004) (0.011)

ed,t ∗ms2
d,t 1.016***

(0.011)
Adjusted R2 0.663 0.865 0.722 0.865 0.879

Specification 2: pd,t = µ +
[
2(msd,t − 0.5)2 ∗mct

]
ed,t + msd,t + mct + εd,t

ed,t 0.212*** 0.090*** 0.217*** 0.093*** 0.242***
(0.002) (0.001) (0.003) (0.001) (0.001)

msd,t 1.197*** 1.196*** 1.002***
(0.002) (0.002) (0.002)

ed,t ∗msd,t -0.009** -0.005*** -0.962***
(0.004) (0.002) (0.004)

ed,t ∗ms2
d,t 0.957***

(0.004)
Adjusted R2 0.168 0.825 0.227 0.825 0.885

Specification 3: pd,t = µ +
[
2(msd,t − 0.5)2 ∗mct

]
ed,t + msd,t + mct + εd,t; ut ∼ N(0, 1)

ed,t -0.177*** -0.275*** -0.180*** -0.279*** -0.088***
(0.017) (0.016) (0.016) (0.016) (0.019)

msd,t 1.005*** 1.003*** 1.038***
(0.016) (0.016) (0.016)

ed,t ∗msd,t 0.302*** 0.296*** 0.301***
(0.016) (0.016) (0.016)

ed,t ∗ms2
d,t -0.190***

(0.011)
Adjusted R2 0.001 0.049 0.006 0.053 0.056

Time FE yes yes yes yes yes
Individual FE yes yes yes yes yes
Observations 80,000 80,000 80,000 80,000 80,000

Note: This table presents estimation results after applying the conventional fixed effect estimator to Monte-Carlo simu-
lated data from specification 1 to 3.
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underlying structure driving the heterogeneity of ERPT due to the existence of the unobserved marginal
cost. The estimated coefficients of the interaction terms from column (2) - (5) are very similar to the
results under specification 1. From regression results under specification 1 and 2, it is difficult to make
an inference on how βd,t depends on firm-level characteristics such as market share msd,t and marginal
cost mct. Specification 3 shows that the estimated coefficients can be very sensitive to the distribution of
the unobserved variable mct where the random factor ut is assumed to be standard normally distributed
rather than uniformly distributed.

2 Algorithm

This section explains the proposed algorithm. The first part of this section introduces the general prop-
erty which the proposed algorithm relies on under the framework of statistical learning theory. The sec-
ond part explains how this property can be exploited to control for unobserved variables in tree based
algorithms.

2.1 The proposed idea under statistical learning theory

A standard statistical learning problem can be formulated as follows. Consider an input space X and
output space Y . (X, Y) ∈ X × Y are random variables with an unknown joint distribution P. We
observe a sequence of n i.i.d. pairs of (Xi, yi) sampled according to P. The goal of the learning problem
is to construct a function g : X → Y such that this function minimises the risk of all possible measurable
functions:

R(g) :=
∫

h(g(X), Y)dP

where h(.) is a criterion function20. Empirically, the optimal g is given by

ĝn := arg min
g∈G

1
n

n

∑
i=1

h(g(Xi), pi)

where the expectation is taken over the distribution of PXY. G is a space of allowed functions de-
pending on the classification algorithm. ĝn stands for the estimated function f from data. The main
concern of the statistical learning theory is to establish bounds for R(ĝn) − infg R(g) so that we know
when empirical error R(ĝn) is a good representation of the true risk measure infg R(g). This measure can
be further decomposed into two components, the estimation error and the approximation error.

R(ĝn)− inf
g

R(g) =
(

R(ĝn)− inf
g∈G

R(g)
)

︸ ︷︷ ︸
Estimation Error

+

(
inf
g∈G

R(g)− inf
g

R(g)
)

︸ ︷︷ ︸
Approximation Error

(1)

20Empirically, h(, ) may take the form of |y− g(X)| or (y− g(X))2 depending on the assumptions of P.
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Estimating the approximation error is usually hard since it requires knowledge about the target.21 Im-
portant contribution on establishing the relationship between estimation error bounds and entropy mea-
sures of classifiers/algorithms has been made by Vladimir N. Vapnik22.

The method introduced in this paper takes a different appraoch. Instead of assuming that the ob-
served set of variables are given, I consider a parallel set of learning problems. The dependent variable
will be the same and take the same value. Most feature variables will also be the same. But some feature
variables may be different.

Suppose we have a set of parallel learning problems indexed by 1, ..., j. For each j, we have an input
space X ×M(j) and an output space Y . (X, M(j), Y) ∈ X ×M(j) × Y are random variables with joint
distribution P(j) unknown to us. We observe n i.i.d. pairs of (Xi, M(0)

i , yi). We know that M(j)
i is a

function of M(0)
i . For each j, we have the conventional learning problem of constructing a function

g(j) : X ×M(j) → Y such that this function minimises the risk:

R(j)(g) :=
∫

h(g(X, M(j)), Y)dP(j)

ĝ(j)
n := arg min

g∈G

1
n

n

∑
i=1

h(g(Xi, M(j)
i ), pi)

Define the numerical measure of the partial derivative as

h2(g, x1, X−x1 , M(j), ε) :=
g(x1 + ε, X−x1 , M(j))− g(x1 − ε, X−x1 , M(j))

2ε

Suppose we are originally interested in the case g(0) : X ×M(0) → Y , the question is to what extent we
can infer the answer of (0) from results from g(j) : X ×M(j) → Y . In this case, we can write the problem
as an expression similar to equation (1):∫

h3[h2(ĝ(j)
n , x1,X−x1 , M(j), ε)− h2(arg inf

g
R(0)(g), x1, X−x1 , M(0), ε)]dP(0) =

∫
h3


(

h2(ĝ(j)
n , x1, X−x1 , M(j), ε)− h2(arg inf

g∈G
R(j)(g), x1, X−x1 , M(j), ε)

)
︸ ︷︷ ︸

Estimation Error

+

(
h2(arg inf

g∈G
R(j)(g), x1, X−x1 , M(j), ε)− h2(arg inf

g∈G
R(0)(g), x1, X−x1 , M(0), ε)

)
︸ ︷︷ ︸

Substitution Error

+

(
h2(arg inf

g∈G
R(0)(g), x1, X−x1 , M(0), ε)− h2(arg inf

g
R(0)(g), x1, X−x1 , M(0), ε)

)
︸ ︷︷ ︸

Approximation Error

 dP(0)

21Most statistical learning algorithms take an agnostic approach and avoid making specific assumptions about the underlying
distribution.

22See Vapnik (1999) for a literature review.
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The first term, the estimation error, is where most frontier machine learning algorithms making ca-
sual inferences work on. The third term is a conventional term but very difficult to measure without
prior assumptions.

The second term is new from this paper. It reflects the effect of substituting the learning problem
from (0) to (j). Note that this substitution error depends on three elements, i.e. the group of allowed
functions G, the relationship between the variable of interest x1 andM(0), and the relationship between
input spaces being substitutedM(0) andM(j).

The interesting part is that the linkage between the size of the substitution error and the set of allowed
functional classes G, and the relationship between input spaces being substitutedM(0) andM(j) can be
exploited to control for unobserved variables by adding the third channel of optimisation.

Consider two cases. If two input spacesM(0) andM(j) are very different from each other, the range
of allowed functions G will have a considerable impact on the substitution error through affecting ĝ(j)

n

and ĝ(j)
n being selected. On the contrary, if two input spaces M(0) and M(j) are identical, the set of

functions G can be of any range and do not change the substitution error.
Alternatively, for any given set of functions G, it is possible to figure out the maximum ”distance”

betweenM(0) andM(j) such that the substitution error is zero.

2.2 Tree based algorithms

This paper exploits a special case where the set of functions G are tree based algorithms and designs a
procedure that can be applied to control for variables that do not vary along all dimensions in a multi-
dimensional panel.

The next two subsections explain how tree based algorithms can be exploited to control for unob-
served components and facilitate the identification of casual inferences. Subsection 2.2.1 starts with a
simple example and outlines the condition (compared with the conventional monotonic transformation)
that needs to be satisfied for a variable to be a good proxy for the unobserved variable. I will refer to
this condition as weak monotonic transformation. I also discuss additional simulation results for gen-
eral cases. These simulation results suggest that a more general form of the monotonic transformation
condition exists. I will try my best to describe this condition and refer to it as the conditional monotonic
transformation property.

In practice, even a conditional (weak) monotonic transformation of the unobserved variable is dif-
ficult to find. Subsection 2.2.2 shows that, in a multi-dimensional panel, parameters from structural
estimations in a set of restricted dimensions can be used as a proxy for the weak monotonic transforma-
tion of unobserved variables not varying along all dimensions.

2.2.1 One-dimensional example

In this subsection, I temporarily abstract away from my ERPT question and discuss this one-dimensional
example that helps to understand and clarify the mechanism of the proposed algorithm. Consider the
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case of identifying the individual treatment effect.23

yi = βiTi + Mi

βi(Mi) := Mi

Ti ∈ {0, 1}, Mi ∈ {0, 1}

where Ti is a treatment indicator randomly drawn from {0, 1} with equal probability and βi is the treat-
ment effect for individual i. Mi is the unobserved variable. In this first example, I assume βi(Mi) = Mi

for simplicity. More general cases are discussed in later sections. The objective is to find βi given data of
individual outcomes yi and its treatment indicator Ti. The data generating process (the functional form
of each variable) is unknown to economists. Mi is unobserved.

Suppose all explanatory variables are observed and the functional form is known, obtaining the
causal inference is equivalent to estimating parameter values of the function and taking the partial
derivative. Similarly, if all explanatory variables are observed but the functional form is unknown, one
could fit a nonparametric function and then perform a numerical partial differentiation with the esti-
mated model. That is, suppose Mi is observed, we can estimate the individual treatment effect βi using
the following two-step procedure:

1. Use a nonparametric econometric method or a machine learning algorithm to recognise the pattern
of yi using Ti and Mi. Obtain

model1 : (Ti, Mi)→ pi

2. Use model1 to construct counterfactual predictions conditioning on the value of Mi and calculate
individual treatment effect24.

βEst
i = model1(1, Mi)−model1(0, Mi)

In this procedure, the ability to make predictions conditioning on the value of Mi is important. If
the explanatory variable Mi is unobserved, the individual treatment effect βi will not be identifiable in
general.

In many cases, economists do not observe Mi. But it may be possible to have/create a variable Mi

that preserves some structural information in Mi. If we could construct counterfactuals conditioning on
the structural information provided by Mi, we will be able to recover βi using the above procedure. In
general, the structural information contained in the alternative variable Mi could be highly nonlinear. I
find that the tree based algorithms have a unique advantage in addressing this type of problems.

Consider the following data generating process of 200 individuals:

23You can also think of this setting in terms of the conventional framework characterising treatment effects: yi = [y1i(Mi)−
y0i(Mi)]Ti + y0i(Mi) with y1i(Mi) = 2Mi and y0i(Mi) = Mi.

24In the case where Ti is continuous, a similar numerical derivation can be obtained by βEst
i = model1(Ti+c,i)−model1(Ti−c,i)

2c
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Table 2: Values of yi

yi βi Mi Ti

0 0 0 0
0 0 0 1
1 1 1 0
2 1 1 1

Table 3: Assignment of Mi

Mi i

0 1-100
1 101-200

In this constructed example, the assignment of Mi happens to be ordered and I want to utilise the
information provided by the index i to estimate the individual treatment effect βi. To capture the highly
nonlinear information contained in i, I will run a tree based algorithm with the supervisor/dependent
variable yi on explanatory variables Ti and i in step 1 and construct counterfactuals based on the esti-
mated tree structure model1(Ti, i) in step 2.

Data

i ≤ 100

0

i > 100

Ti = 0

1

Ti = 1

2

Figure 1: Fitted model1(Ti, i)

The result of applying a decision tree is presented in figure 1. In producing model1(Ti, i), the algo-
rithm compares the resulted MPE25 between the best split of Ti and the best split of i. Splitting the
sample into Ti = 0 and Ti = 1 will result in MPE = 0.5, while splitting into i ≤ 100 and i > 100 (the
best split for i) will result in MPE = 0.25. Therefore, the algorithm will choose to split i for its first split.
After this split, the MPE for the subgroup i ≤ 100 is 0 and no further split is needed. The algorithm will
try to find the best split for the subgroup i > 100. In this case, the best split will be Ti = 0 and Ti = 1.

25I use h(.) = |yi −mc| as the error criteria.
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ŷi Evaluated at
i Ti = 1 Ti = 0 Estimated βi True βi

1-50 0 0 0 0
51-100 0 0 0 0
101-150 2 1 1 1
151-200 2 1 1 1
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0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
First 200 observations

 ●● ●●True Beta Predicted Beta

The table on the left hand side illustrates the second step. The right hand side graph compares the
true βi with the estimated βi in an environment closer to reality. First, a random noise is added to the data
generating process, i.e. yi = βiTi + Mi + εi, where εi ∼ N(0, 0.01). Second, in estimating the model1(.), I
add a random variable ζi ∼ N(0, 1) as an additional explanatory variable which is independently gener-
ated from the data generating process of pi. The idea is that the algorithm should be able to distinguish
informative variables from uninformative ones by utilising additional structural information implied by
the index i.

Figure 6 gives the estimated βi under three different settings26. Sub-figure (a) represents the result
when I use ei and ζi as the explanatory variables. As the algorithm can no longer make predictions of βi

conditioning on useful information in Mi, the predicted βi can be very different from the true βi. Sub-
figure (c) represents the estimates after adding N − 1 dummies of the index i. Sub-figure (d) represents
the estimates when the true βi = Mi is added as a feature variable.

In general, the assignment of Mi will not be ordered and adding index i will not provide relevant
information. Figure 7 presents estimates of βi where Mi is randomly drawn from {0, 1} with equal
probability for each individual i.

To make the correct prediction of βd, one needs to find a transformation of the unobserved variable
Mi that satisfies a weak monotonic property k defined below:

Definition 1. Let {an} be a sequence of real numbers. k : {an} → {bn} ∈ RN is a weak monotonic
transformation if

aj > ai ⇒ bj > bi ∀i, j ∈ {1, ..., N} or

aj > ai ⇒ bj < bi ∀i, j ∈ {1, ..., N}

26The additional variable ζi is included in all cases.
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Proposition 1. Let {an} be a sequence of real numbers. Suppose that entering {an} as an explanatory variable in
a recursive binary splitting algorithm results in k < n unique splitting points am1 , ..., amk with mi indicating the
index for the i th split, then entering any weak monotonic transformation of {an} will result in the same splitting
indices m1, ..., mk.

The proof of proposition 1 is given in appendix B. Intuitively, since a binary splitting algorithm only
uses ordinal information of an explanatory variable in its splitting criteria, any transformation that pre-
serves the ordinal information of this explanatory variable should result in the same splitting points.
Compared to proposition 1, a more interesting and useful property of tree based algorithms is the con-
ditional monotonic transformation property as stated below:

Proposition 2. Let Xn be a set of feature variables excluding an. If var(a|Xn) 6= 0 for some values of Xn and
there is a large number of observations for these subsets of Xn, entering {an} as a feature variable is equivalent to
entering any k({an}|Xn) in a recursive binary splitting algorithm.

I have not proved proposition 2 yet. I illustrate my idea using the following numerical example.
Consider the case where the treatment effect βi depends on another observable explanatory variable Xi.
To keep the story simple, I assume that Xi is independently drawn from {0, 1} with equal probability
and βi is linear in Xi and Mi.

yi = βiTi + Mi

βi = Xi + Mi

Ti ∈ {0, 1}, Mi ∈ {0, 1}, Xi ∈ {0, 1}

I experiment on the following two formulations of Mt:

M1
d =

{
−|εi| i f Mi = 0
|εi| i f Mi = 1

; M2
i =

{
−|εi|+ Xi i f Mi = 0
|εi|+ Xi i f Mi = 1

; where εi ∼ N(0, 1)

These two formulations are (a) highly nonlinear but (b) satisfy the weak or conditional weak mono-
tonic transformations27. Estimation results are given in Figure 8 and 9. Please note that the algorithm
does not know the data generating process of M1

i and M2
i and thus cannot see the clear distinction be-

tween red and green points in sub-figures (a) and (b). It classifies by recognising patterns between pi

and M1
i , Ti (or M2

i , Ti, Xi in the second case).
To sum up, tree based algorithms only use the ordinal information in its classification process. Any

transformation that contains the same ordinal information of the unobserved variable will produce the
same tree structure. Therefore, if one can find a variable or a set of variables that contain approximately
the same ordinal information of the unobserved variable, the casual inference can be made (approxi-
mately) as if we had observed the unobserved variable.

27Please note that M1
d and M2

i do not satisfy the conventional monotonic transformation definition which requires aj ≤ ai ⇔
bj ≤ bi ∀i, j ∈ {1, ..., N}
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2.2.2 Utilising orthogonal dimensions

In general, it is difficult to apply the conditional weak monotonic transformation property in a one
dimensional data framework. However, in a multi-dimensional panel, this property can be exploited to-
gether with orthogonal variations across dimensions to control for unobserved variables. The proposed
approach exploits the fact that certain dimensions are less influenced by certain types of errors. Condi-
tioning on a particular dimension, the structural estimates may be biased. However, as long as the bias
is ”well structured” in other dimensions, the weak monotonic transformation property will apply and
the individual treatment effect is identifiable28. The idea of using all possible combinations of subsets of
dimensional-limited structural estimations to control for unobserved variables is first proposed in this
paper.

In the context of the constructed two-dimensional examples in section 2, the procedure of the pro-
posed algorithm can be applied as follows. First, run simple OLS regressions using the pricing equation
implied by the structural model in all possible subsets of dimensions. Second, gather these estimates
from regressions and enter them as variables in a tree based algorithm to predict the dependent vari-
able29. In this process, only informative coefficients on predicting the dependent variable from the first
step will be selected. Third, use the obtained non-parametric model to predict the dependent variable by
changing the key variable of interest and keeping other explanatory variables and the obtained coeffi-
cients in step 1 fixed. Fourth, calculate the numerical partial derivative and perform a second algorithm
mapping this numerical partial derivative on observed explanatory variables and estimated structural
coefficients.

1. For t = 1...nt, run OLS, and collect coefficients b0
t , b1

t

pd,t = b0
t + b1

t ed,t

For d = 1...nd, run OLS, and collect coefficients b0
d, b1

d

pd,t = b0
d + b1

ded,t

2. Approximating p. Run GBRT entering coefficients {b0
t , b1

t , b0
d, b1

d} as additional feature variables.
Obtain

model1 : (ed,t, msd,t, b0
t , b1

t , b0
d, b1

d)→ pd,t

3. Numerical differentiation. Use model1 to construct counterfactual predictions conditioning on the

28In the context of the ERPT problem, well structured means that the covariance between the volatility (second moment) of
bilateral exchange rates and the level (first moment) of marginal cost of the firm at the time dimension does not vary across
destinations. This point is explained by analytical examples in the appendix.

29Unlike the fixed effect related methods, instead of partitioning out information, the proposed approach adds back these
estimates to the main estimation question.
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values of msd,t, b0
t , b1

t , b0
d, b1

d and calculate30:

pEst1
d,t =model1(ed,t − ε, b0

t , b1
t , b0

d, b1
d)

pEst2
d,t =model1(ed,t + ε, msd,t, b0

t , b1
t , b0

d, b1
d)

βEst
d,t =

pEst2
d,t − pEst1

d,t

2ε

4. Approximating βEst. Run GBRT with the dependent variable βEst
d,t on ed,t, msd,t, b0

t , b1
t , b0

d, b1
d, and get

model2 : (ed,t, msd,t, b0
t , b1

t , b0
d, b1

d)→ βEst
d,t

Table 4 presents the estimated ERPT from applying the proposed algorithm to three examples con-
structed in the section 2.31

The algorithm is evaluated in two aspects, the ability to recover the key parameter of interest, βd,t

and the ability to discover the underlying structure βd,t. In contrast to conventional regression methods,
the algorithm estimates β for each d and t, which generates 80, 000 estimates. I construct three measures
to evaluate the algorithm’s ability to recover the key parameter of interest, βd,t: (a) the usual absolute
measure of distances defined as the sum of squared residuals, SSR; (b) the measure of the number of out-
liers or extreme values defined as the number of estimated βEst that lies outside one standard deviation
of the true β over total number of estimated βEst,32; (c) visualisation plotting the first 50 observations.

SSR :=∑
d

∑
t
(βEst

d,t − βd,t)
2

Error Rate :=
|{βEst

d,t : |βEst
d,t − βd,t| > σβ}|
|{βEst

d,t }|

For evaluating the ability to recover the underlying structure of the ERPT function, I construct the
following three measures. Measure 1 and 2 will enable us to compare the true relationship between ERPT
and market share with the algorithm estimated relationship. Measure 3 is helpful in understanding why
the algorithm estimated relationship is different from the true relationship under some circumstances.

1. The true relationship between ERPT and market share evaluated at different quantiles of the marginal
cost.

• Calculate mcq := quantile(mc, q) from data; q ∈ [0.3, 0.5, 0.7]33

• Plot f (ms) = (ms− 0.5)2 + mcq

30Throughout my analysis, I choose ε to be half standard deviation of the policy variable, i.e. ε = 0.5std(ed)
31In evaluating the algorithm, I construct two different datasets of the same size generated by the data generating process

specified in section 2. The algorithm is first trained in one dataset. The fitted model is then tested in the second dataset.
32In my examples, the panel is balanced, |{βEst

d,t }| = nDnT
33In my initial experiments, I arbitrarily chose these three quantiles 0.3, 0.5, 0.7. A more common choice may be 0.25, 0.5, 0.75.
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Table 4: Estimates of the proposed algorithm

Specification 1:

ms

-0.5 0.0 0.5 1.0 1.5

0.0

0.5

1.0

1.5

b
e
ta

Estimated 0.7q

Reverse Engineered

True

Estimated 0.3q

Estimated 0.5q

First 50 observations

0 10 20 30 40 50

0.6

0.7

0.8

0.9

1.0

1.1

1.2

b
e
ta

EstimatedTrue

SSR = 83.71, Error Rate = 0.54%

Specification 2:

ms

-0.5 0.0 0.5 1.0 1.5

-0.2

0.0

0.2

0.4

0.6

b
e
ta

Estimated 0.7q

Reverse Engineered

True

Estimated 0.3q

Estimated 0.5q

First 50 observations

0 10 20 30 40 50

-0.2

0.0

0.2

0.4

0.6

b
e
ta

EstimatedTrue

SSR = 86.05, Error Rate = 13.40%

Specification 3:

ms

-3 -2 -1 0 1 2 3

-10

-5

0

5

b
e
ta

Estimated 0.7q

Reverse Engineered

True

Estimated 0.3q

Estimated 0.5q

First 50 observations

0 10 20 30 40 50

-6

-4

-2

0

2

b
e
ta

EstimatedTrue

SSR = 96151.01, Error Rate = 2.64%

16



Table 5: No additional information

Specification 1:

ms

-0.5 0.0 0.5 1.0 1.5

0.0

0.5

1.0

1.5

b
e
ta

Estimated 0.7q

Reverse Engineered

True

Estimated 0.3q

Estimated 0.5q

First 50 observations

0 10 20 30 40 50

-0.5

0.0

0.5

1.0

1.5

b
e
ta

EstimatedTrue

SSR = 5934.63, Error Rate = 73.47%

Specification 2:

ms

-0.5 0.0 0.5 1.0 1.5

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

b
e
ta

Estimated 0.7q

Reverse Engineered

True

Estimated 0.3q

Estimated 0.5q

First 50 observations

0 10 20 30 40 50

-0.4

-0.2

0.0

0.2

0.4

0.6

b
e
ta

EstimatedTrue

SSR = 817.50, Error Rate = 44.41%

Specification 3:

ms

-3 -2 -1 0 1 2 3

-10

-5

0

5

10

15

b
e
ta

Estimated 0.7q

Reverse Engineered

True

Estimated 0.3q

Estimated 0.5q

First 50 observations

0 10 20 30 40 50

-30

-20

-10

0

10

20

b
e
ta

True
Estimated

SSR = 1425815.68, Error Rate = 25.84%
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Table 6: Adding dimensional index

Specification 1:

ms

-0.5 0.0 0.5 1.0 1.5

0.0

0.5

1.0

1.5

b
e
ta

Estimated 0.7q

Reverse Engineered

True

Estimated 0.3q

Estimated 0.5q

First 50 observations

0 10 20 30 40 50

0.0

0.5

1.0

1.5

b
e
ta

EstimatedTrue

SSR = 282.40, Error Rate = 2.66%

Specification 2:

ms

-0.5 0.0 0.5 1.0 1.5

-0.5

0.0

0.5

1.0

b
e
ta

Estimated 0.7q

Reverse Engineered

True

Estimated 0.3q

Estimated 0.5q

First 50 observations

0 10 20 30 40 50

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

b
e
ta

EstimatedTrue

SSR = 160.56, Error Rate = 19.37%

Specification 3:

ms

-3 -2 -1 0 1 2 3

-15

-10

-5

0

5

10

b
e
ta

Estimated 0.7q

Reverse Engineered

True

Estimated 0.3q

Estimated 0.5q

First 50 observations

0 10 20 30 40 50

-10

-5

0

5

b
e
ta

EstimatedTrue

SSR = 334858.85, Error Rate = 4.08%
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2. The estimated relationship between ERPT and market share evaluated at different quantiles of
feature variables excluding market share ms, i.e. X−ms := ed,t, b0

t , b1
t , b0

d, b1
d.

• Calculate the q-th quantile of each variable in X−ms;

• Plot f (ms) = model2[ms, (X−ms)q] where (X−ms)q := (ed,t)
q, (b0

t )
q, (b1

t )
q, (b0

d)
q, (b1

d)
q

3. The estimated relationship between ERPT and market share evaluated at the reverse engineered
quantiles of the marginal cost.

• Estimate mcq implied by (X−ms)q; q ∈ [0.3, 0.5, 0.7]

(a) Run GBRT with mct as the dependent variable on X−ms and get modelmc

(b) Estimate mcq = modelmc[(X−ms)q]

• Plot f (ms) = (ms− 0.5)2 + mcq

I compare results for the proposed method with two alternative settings. Table 5 presents results
when no additional information is added. model1 will be a function mapping (ed,t, msd,t) → pd,t and
X−ms = ed,t. The estimation procedure includes step 2-4 only. Table 6 presents results using indices d
and t as controls. model1 will be a function mapping (ed,t, msd,t, d, t)→ pd,t with X−ms = (ed,t, d, t).

Comparing results of three tables, the proposed method is significantly better at estimating βd,t and
approximating the underlying structure of βd,t in all three specifications. The method without adding
any additional information generates large errors in the point estimate of βd,t due to alignments of the
unobserved variable mct. Given that, the graph on the right hand side shows that the estimated rela-
tionship represents the ERPT function evaluated at the median of the unobserved variable mct. Adding
dimensional indices as additional feature variables will improve the accuracy of point estimates (by a
smaller amount compared to the proposed approach) but does not provide additional information on
the quantile of the unobserved variable mct. As a result, the resulting underlying structure of βd,t can be
very different from the true structure.

The key to improve the estimates relies on feeding the correct additional structural information about
the functional forms to the machine learning algorithm. This type of algorithm has not been explored
by existing machine learning approaches because adding such structural information is not possible for
prediction problems34. A formal presentation of the algorithm can be found in the appendix.

3 Model and Recovering ERPT from Simulated Exporters

The previous section tests the algorithm using simple numerical examples. This section tests the perfor-
mance of the algorithm in a workhorse international macroeconomic model with heterogeneous firms.

34They require information of the dependent variable to estimate structural coefficients.
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3.1 Model

I take the seminal contribution of Atkeson and Burstein (2008) as the benchmark model. The model
is designed to understand how strategic competition due to different market structures (productivity
distributions) could reach different equilibria after an exchange rate shock. There are N countries in the
world trading with each other. Within each country, there are a large but limited number of sectors S. As
in Atkeson and Burstein (2008), these sectors can be interpreted as “the lowest level of disaggregation
of commodities used in economic censuses and price index construction”. Within each sector, there are
a limited number of firms producing goods. Each firm produces a distinct product with the elasticity of
substitution within the sector being ρs.

To make the model tractable, I will stick to the following two simplifications made in the original
model. First, the model starts with an equilibrium and firms do not make entry and exit decisions35.
Second, firms only use labour in their production and no imported inputs are needed.

To customise the model to fit the purpose of this paper, I extend the model in three aspects. First, I
allow asymmetries in industry structures. To achieve this, I assume a large but limited number of sectors.
Second, I extend the original two-country framework to an N-country trading system. This modification
allows the model to study the effect of asymmetric exchange rate shocks on trade pattens. Third, to
ensure a unique equilibrium in this multi-country world, I assume that only the best domestic firm in
each sector exports.36 This setting can be tough as there exists a hidden sector specific trading barrier
such that only the best firm in each sector finds it profitable to export. Technically, this simplification
makes this multi-firm multi-sector multi-country model stable and avoids multiple equilibria. In an
N-country framework, it generates a very nice market structure with productive N-1 firms from trade
partners and a bunch of domestic firms that may be less productive but large in numbers [see figure 18].

3.1.1 Firm’s Problem

Variables in this model have five dimensions with f , s, o, d, t standing for firm, sector, origin, destination,
time respectively. The final consumption Dd,t in destination d is aggregated across sectors using the CES
production function with the elasticity of substitution across sectors being equal to η. The price index
for final consumption Pd,t can be derived as follows.

Dd,t ≡
[
∑

s
(Ds,d,t)

η−1
η

] η
η−1

, Pd,t ≡
[
∑

s
(ps,d,t)

1−η

] 1
1−η

(2)

Within a sector, there are foreign firms in this sector 1s,o winning the exporting games IE from each
origin o and all domestic firms in this sector 1s,d competing together with the within-sector elasticity of
substitution ρs. The sectoral demand Ds,d,t and price Ps,d,t are given by:

35The rationale is that firms’ decisions depend on long-run sum of expectations of all future profits. As this model aims to
study short-run effects of exchange rate fluctuations, this is a relatively safe condition.

36When the best firm is determined, it exports to all countries.
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Ds,d,t ≡
[
∑

o
∑

f∈1s,o∩1E

(q f ,s,o,d,t)
ρs−1

ρs + ∑
f∈1s,d

(q f ,s,o,d,t)
ρs−1

ρs

] ρs
ρs−1

Ps,d,t ≡
[
∑

o
∑

f∈1s,o∩1E

(p f ,s,o,d,t)
1−ρs + ∑

f∈1s,d

(p f ,s,o,d,t)
1−ρs

] 1
1−ρs

Firms compete in quantities q f ,s,o,d,t under Cournot competition within each sector s37:

max
q f ,s,o,d,t

q f ,s,o,d,t(p f ,s,o,d,teo,d,t −mc f ,s,o,t)

subject to

q f ,s,o,d,t =

(
p f ,s,o,d,t

Ps,d,t

)−ρs
(

Ps,d,t

Pd,t

)−η

Dd,t (3)

where mc f ,s,o,t is the marginal cost of firm f from sector s and origin o at time t.

3.1.2 Price, Market Share and Demand Elasticity

The optimal price p f ,s,o,d,t for an exporter from origin o to destination d can be expressed as a function
of price elasticity of demand ε f ,s,o,d,t, marginal cost ms f ,s,o,d,t and bilateral exchange rate eo,d, which is
defined as units of currency o per unit of currency d at time t.

p f ,s,o,d,t =
ε f ,s,o,d,t(ms f ,s,o,d,t)

ε f ,s,o,d,t(ms f ,s,o,d,t)− 1
mc f ,s,o,t

eo,d,t
(4)

The price elasticity of demand ε f ,s,o,d,t can be expressed as a function of the market share and the elasticity
of substitution. Specifically, under the assumption that ρ > η, the price elasticity of demand is a strictly
decreasing function of market share, i.e. bigger firms face a less elastic demand and charge a higher
markup.

ε f ,s,o,d,t =
1

1
ρ (1−ms f ,s,o,d,t) +

1
η ms f ,s,o,d,t

(5)

where market share is defined as

ms f ,s,o,d,t =
p f ,s,o,d,tq f ,s,o,d,t

∑ f p f ,s,o,d,tq f ,s,o,d,t
=

p1−ρ
f ,s,o,d,t

∑ f (p f ,s,o,d,t)1−ρ
(6)

Substituting (9) into (8), we can express elasticity of demand as relative prices. ERPT is less than one
as a decrease in ed,t leads to an increase in optimal price, which in turn leads to a lower market share
and increases the optimal markup. A log-linearised version of the above description can be derived as
follows:

37In this nested CES structure, the main theoretical result is not sensitive to whether firms compete in prices or quantities.
Atkeson and Burstein (2008) show that similar expressions can be derived if firms are competing in prices.
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Log-linearising equation (4), deviations of optimal price can be expressed as a function of deviations
of its own market share, its own marginal cost and the bilateral exchange rate between the origin country
and the destination country.

p̂k,s,o,d,t = κk,s,o,d,tm̂sk,s,o,d,t + m̂ck,s,o,t − êo,d,t (7)

where κ f ,s,o,d,t is the price elasticity with respect to a firm’s own market shares, which equals the de-
sired markup times a multiplier due to differences in elasticity of substitution across sectors and within
sectors.

κ f ,s,o,d,t ≡
(

ε f ,s,o,d,t

ε f ,s,o,d,t − 1

)(
− 1

ρs
+

1
η

)
(8)

Note that both m̂ck,s,o,t and êo,d,t are state variables and exogenous to firms. After a shock, firms reach
the new equilibrium through Cournot competition. The deviation of market share m̂sk,s,o,d,t for firm k
depends on ex ante market structure, i.e. market share distributions {msk,s,o′,d,t}k∈1 f ,o′∈1o , marginal cost
shocks {m̂ck,s,o′,t}k∈1 f ,o′∈1o , and the bilateral exchange rate movements of all trade partners from country
d, {êo′,d,t}o′∈1o .

m̂sk,s,o,d,t [1− (1−msk,s,o,d,t)(1− ρs)κk,s,o,d,t]

= (1−msk,s,o,d,t) {(1− ρs) [m̂ck,s,o,t − êo,d,t]}
−∑

o′
∑
f 6=k

ms f ,s,o′,d,t
{
(1− ρs)

[
m̂c f ,s,o′,t − êo′,d,t − κ f ,s,o′,d,tm̂s f ,s,o′,d,t

]}
(9)

It is worth stressing that even under a firm specific shock, the equilibrium effect of changing market
shares for other firms ∑o′ ∑ f 6=k ms f ,s,o′,d,tκ f ,s,o′,d,tm̂s f ,s,o′,d,t will not be zero in most cases38. The impor-
tance of competitors’ market share reactions is weighed by the market share with its importance strictly
increasing in the market share of the competitor39.
Substituting (9) into (7), we can obtain a general equation for price deviations in a multi-country envi-
ronment.

p̂k,s,o,d,t = λk,s,o,d,t

[
m̂ck,s,o,t − êo,d,t − κk,s,o,d,tĈEk,s,o,d,t

]
(10)

where λk,s,o,d,t is the theoretical ERPT and it is U-shaped in market share as derived in most ERPT litera-
ture,

λ f ,s,o,d,t =
1

1− (1−ms f ,s,o,d,t)(1− ρs)κ f ,s,o,d,t
(11)

38In the presence of m̂s f ,s,o′ ,d,t, there is no simple analytical solution for the optimal market share change after a shock even
after log-linearisation. Given a set of realised shocks and prior market structure, market share conditions (9) will formulate a
system of f nonlinear equations and can be solved numerically. As I will show in later simulations, reaction from other firms
will make ERPT fail to present the U-shaped response in market share.

39Note that the expression κ f ,s,o′ ,d,t is strictly increasing in market share ms f ,s,o′ ,d,t.
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Figure 2: Plot of λ f ,s,o,d,t
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and ĈEk,s,o,d,t is the total effect of competitors’ reactions.

ĈEk,s,o,d,t = ∑
o′

∑
f 6=k

ms f ,s,o′,d,t(1− ρs)
[
m̂c f ,s,o′,t − êo′,d,t − κ f ,s,o′,d,tm̂s f ,s,o′,d,t

]
(12)

In a multi-country setting, the optimal price response of an exporter is a function of origin specific
exchange rate shock minus bilateral exchange rate shocks of all other trade partners weighted by a non-
linear function of corresponding competitor’s market share.

The household’s problem follows closely with Atkeson and Burstein (2008). There is a representative
household in each destination d maximising its expected utility by choosing optimal final consumption
Cd,t and optimal labour supply Ld,t. The representative consumer can trade a complete set of interna-
tional assets from all trade partners.

max
Cd,t,Ld,t

E0

∞

∑
t=0

βtU(Cd,t, Ld,t)

subject to
Ud,t = log[Cµ

d,t(1− Ld,t)
1−µ]

Pd,tCd,t + ∑
o

[
∑
ν

pB
o,t(ν)Bo,t(ν)− (1 + io,t−1)Bo,t−1

]
∗ eo,d,t = Wd,tLd,t + Πd,t

where holding Bo,t(ν) will earn Bo,t unit of currency o at t + 1 if state ν happens. pB
o,t(ν) is the price of

bond from origin o with state ν. io,t−1 represents the interest paid in the unit of currency o from t− 1 to
t. Πd,t is the lump-sum profit transfer from all domestic firms and exporters in country d.

The optimal solution of household’s problem is given by

1− µ

µ

Cd,t

1− Ld,t
=

Wd,t

Pd,t
(13)
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Co,tPo,t

eo,d,tCd,tPd,t
=

Co,t+1(ν)Po,t+1(ν)

eo,d,t+1(ν)Cd,t+1(ν)Pd,t+1(ν)
(14)

where (13) represents the optimal division of consumption and labor and (14) stands for the conventional
international risk sharing condition.

3.1.3 Other equilibrium conditions

The production function is assumed to be linear in labour where the marginal cost mc f ,s,o,t of a firm is
calculated by dividing the nominal wage of the origin country Wo,t by its productivity Ω f ,s,o,t. For each
firm, the total quantity of products sold ∑d q f ,s,o,d,t equals the quantity produced Ω f ,s,o,tl f ,s,o,t. The last
equation is the labor market clearing condition.

mc f ,s,o,t =
Wo,t

Ω f ,s,o,t

Ω f ,s,o,tl f ,s,o,t = ∑
d

q f ,s,o,d,t

∑
f ,s

l f ,s,o,t = Lo,t

I select the nominal wage Wo,t in each origin as the numeraire and set it equal to one. In this model, the
productivity distribution can be asymmetric across sectors and countries. As a result, the bilateral nom-
inal exchange rate is not necessarily equal to one. In my simulation the steady state bilateral exchange
rate is determined by the bilateral balance of trade condition, i.e.

∑
f ,s

p f ,s,d,o,tq f ,s,d,o,t = ∑
f ,s

p f ,s,o,d,tq f ,s,o,d,t ∗ eo,d,t f or o 6= d

3.2 Recovering ERPT from simulated exporters

In the following subsection, I use the model to test the proposed algorithm. Specifically, I simulate
the model under different scenarios, calculate the model implied ERPT at firm level by constructing
counterfactual environments, run the proposed algorithm using simulated data and compare estimated
pass through with its theoretical value.

3.2.1 Model Simulation

I use the same calibration for the elasticity of substitution across sectors η and within sectors ρ as in
Atkeson and Burstein (2008). In the benchmark case, I choose a model of three countries. The number
of sectors is chosen to be 25, consistent with the classification of popular industry coding standards40.
For a given prior productivity distribution, the number of domestic firms in each county determines the
degree of home bias in the sector. For a model of three countries, I set the number of domestic firms to

40Increasing the number of countries and sectors will exponentially increase the number of nonlinear equations needed to
solve for each period.
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be 3. As a result, there will be 5 firms in each sector, including two relatively more competitive foreign
firms and three domestic firms. This setting gives a reasonable median home market share around 50%
depending on the productivity distribution of the sector in other countries41. Firm level productivity
shocks are assumed to follow a simple AR(1) process with persistence equal to 0.95.

Countries S N ρ η Φ(Ω)

Benchmark 3 25 3+2 10 2 Uniform

Robustness 4,5 10-35
3 to 10 +

Countries - 1
10 2 Uniform

To ensure the existence of a unique equilibrium in each period, I consider a financial autarky case
and give exogenous exchange rate shocks to the model42. I further assume that the no financial market
exchange rate arbitrage condition holds, i.e.

e1,2,t =
e1,3,t

e2,3,t

which implies a maximum of 2 exchange rate shocks in this three country world43.

e1,2,t = ξ1,te1,2,ss, e3,2,t = ξ3,te3,2,ss, ξi,t ∼ uni f orm(0.8, 1.2)

There are two sets of state variables influenced by two sets of shocks, i.e. the set of productivity
shocks Ω f ,s,o,t for each firm, each sector and each country and the set of bilateral exchange rate shocks
eo,d,t. In each period, productivity shocks and exchange rate shocks are first realised and the corre-
sponding values of state variables are then calculated. The most productive domestic firm in each sector
wins the exporting game and exports to all trade partners. Collecting all equilibrium conditions for
all countries, solving the model is equivalent to solving a large-scale constrained system of nonlinear
equations44.

In the following exercise, I will take country 1 as the home country and try to recover ERPT of country
1’s exporters. Counterfactual macro state is constructed as follows45

ec
1,2,t = e1,2,t−1, ec

3,2,t = ξ3,te3,2,ss, ec
1,3,t =

ec
1,2,t

ec
3,2,t

41In this model, increasing the number of domestic firms will not always lead to a greater home bias as it will also make
foreign firms surviving from the exporting game more competitive. Home firms increase in numbers but foreign competitors
increase in quality. The equilibrium result depends on the assumption of productivity distributions.

42The international risk sharing condition (14) no longer applies.
43The third bilateral exchange rate is determined by the no arbitrage condition.
44The setting that only the most productive firm in a sector exports avoids potential multiple equilibria and returns a unique

solution in most calibrations. The model is built using Julia JUMP module and solved using Ipopt solver.
45The algorithm is tested on various settings of exchange rate shocks and a world with maximum 5 countries. Related results

are available upon request.
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3.2.2 Estimation procedure

After the model is simulated, an artificial dataset is constructed to resemble those observable variables
in China’s custom dataset and test the proposed algorithm. The objective of the algorithm is to use only
information from the constructed dataset to (a) learn from trade patterns, (b) estimate price changes
under a bilateral exchange rate shock at period t given market conditions at t − 1 and (c) recover the
model implied ERPT for estimated firms.

The estimation procedure is given as follows:

1. Simulate the model for 240 periods (20 years). Record variables that are accessible from a common
custom database including f , s, o, d, t, p f ,s,o,d,t, q f ,s,o,d,t, plus some observable macroeconomic indices
including Ds,d,t, Ps,d,t, ed,t, Pd,t, Ld,t, Cd,t.

2. Re-simulate the model to recover the model implied counterfactual ERPT. To calculate the model
implied theoretical ERPT, I load all variables including the productivity shock from the simulated
model. I then construct the counterfactual equilibrium using the productivity distribution at period
t-1 and bilateral exchange rate at period t. The price difference between the counterfactual and the
original equilibrium reflects the equilibrium effect of a pure exchange rate shock.

3. Identify a simple regression relationship between the dependent variable and the observable inde-
pendent variables based on economic theory.

log(p f ,s,d,t) = a + b ∗ log(ed,t) + c ∗ log(p f ,s,d,t−1)

4. Identify dimensions to be fixed as {s, t, d, sd}. Run regressions and collect coefficients as, bs, cs, at, bt, ct, ...

5. Create market share measure ms f sdt,sdt =
p f ,s,d,tq f ,s,d,t
Ps,d,tDs,d,t

6. Run GBRT with supervisor log(p f ,s,d,t) on the policy variable log(ed,t) and the feature variables

X = log(ed,t−1), log(ed′,t), log(ed′,t−1), log(ms f sdt−1,sdt−1),

log(Ds,d,t−1), log(Ps,d,t−1), log(Pd,t−1), log(Ld,t−1), log(Cd,t−1),

as, bs, cs, at, bt, ct, ...

and obtain model1

7. Numerical differentiation using the predicted price at current exchange rate and the predicted price
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if the exchange rate was the same as in the previous period46.

pEst1
f ,s,d,t = model1(ed,t,X )

pEst2
f ,s,d,t = model1(ed,t−1,X )

ERPTEst
f ,s,d,t =

log(pEst1
f ,s,d,t)− log(pEst2

f ,s,d,t)

ed,t − ed,t−1

8. Run GBRT again with supervisor ERPTEst
f ,s,d,t on log(ed,t), X and obtain model2.

3.2.3 Results

The performance of the algorithm is tested in two cases. Case 1 shuts down the idiosyncratic productiv-
ity shocks of firms in all countries47, leaving only multilateral exchange rate shocks. Case 2 represents
the world with both the idiosyncratic productivity shocks and multilateral exchange rate shocks.

In a multi-country world, multilateral rather than bilateral exchange rate movements matter. As
derived in (9) and (12), the multilateral exchange rate shocks transmit into exporter’s prices through the
competition channel. However, controlling for the effect of multilateral exchange rate movements is not
straightforward and most empirical works estimating the ERPT from the exporters’ perspective only
focus on bilateral movements.

Figure 3: Naive ERPT estimates
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Note: The blue dots represent the model implied firm-level ERPT without accounting
for the exchange rate movements of other trade partners. The model is simulated
under case 1 where there is no productivity shock. If there is no exchange rate shock,
the price p f ,s,1,2,t will be the same across all time periods.

Ignoring this competition effect will potentially lead to seemingly unacceptable ERPT estimates. Fig-
ure 3 shows calculation of firm level ERPT for exporters in country 1 selling in country 2 without con-
trolling for the exchange rate movement between country 2 and 3. In the simulated model, the price of

46All other variables in X take their current value at time t.
47Firms are still different in their productivity drawn.
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Figure 4: ERPT estimates of the proposed algorithm versus model implied counterfactuals
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Case 1: only exchange rate shocks
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Case 2: add productivity shocks

Note: The left graph represents the time-average of ERPT for exporters originating from country 1 exporting to country 2. The x-axis of the left
graph represents the index of exporters. The red dots represent estimates of the proposed algorithm. The blue dots represent the time-average
of model implied firm-level ERPT backed up through counterfactual analysis. The blue bars reflect the time fluctuation of model implied ERPT
for each firm. Error rate and SSR are calculated based on point estimates of ERPT for each firm-time combination (i.e. not time-averages).
The right graph represents the estimated relationship between market share and ERPT. The blue dots plot the model implied ERPT. The
coloured lines provide the algorithm estimated relationship evaluated at different quantiles of the feature variables excluding the market
share, X−ms.
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exporters from country 1 at country 2, p f ,s,1,2,t, reacts to both e1,2,t and e2,3,t. The bilateral exchange rate
movements of other trade partners of the destination country could potentially magnify or mitigate the
effect of the bilateral exchange rate movement from the origin country. If the ERPT is calculated without
accounting for this effect, calculated results can be significantly greater than 1 or smaller than 0.

Figure 4 shows the results of the time-averaged estimated ERPT48 from the proposed algorithm. The
proposed algorithm performs extremely well under case 1. All time-averaged estimates lie within one
standard deviation of the model implied estimate and are very close to the mean value of the model
implied estimates. The error rate on point estimates is only 2.53%. The right graph shows that the
estimated relationship between ERPT and market share is well aligned with the true relationship of the
model implied estimates49.

For the second case, adding productivity shocks increases the error rate. However, out of 25 firms,
only two firms’ time-average ERPT lie outside one standard deviation of the true value. The right figure
is relatively weak in identifying the correct quantiles but still well aligned with the true relationship
implied by the model.

4 Empirical Results

This section presents three empirical contributions on understanding firms’ pricing behaviour. First,
with the proposed algorithm, this paper presents estimates of ERPT for each firm-product-destination
combination of China’s exporters during the sampling period 2000-2006.50 These estimates can be later
used to construct effective exchange rate measures using a bottom-up approach based on firm-level
ERPT; to identify the most and the least influenced commodity, industry and trade partner by exchange
rate shocks; or to plot distributions of ERPT for different types of firms, industries and destinations, etc.

Second, this paper takes an agnostic approach to study the relationship between ERPT and vari-
ous market share measures. With a four-dimensional panel (firm-product-destination-time), 12 market
share measures can be constructed. Among these 12 market share measures, 9 measures are economi-
cally meaningful. Although there has been increasing attention in the trade and international literature
on how different market share measures capture different aspects of firms’ pricing decision and inter-
national shock transmissions, most studies work on a subset of the market share framework presented
in table 7. My estimates contribute to the literature by assessing the relative statistical importance of
market shares in explaining variations of ERPT and the unit value volatility. In addition, this paper
empirically documents the nonlinear relationship between various market share measures and confirms

48i.e. 1
nt

∑t βEst
f ,s,1,2,t. As only the best firm exports, the 25 firms in the figure stand for 25 sectors in the model. Graphs for

detailed point estimates and the comparison with alternative methods can be found in the appendix.
49Note that for a given market share, the same exchange rate shock may have different impacts on each sector of an economy,

which depends on two factors: (a) the underlying distribution of productivity for this particular sector of exporters from all
countries and (b) the general equilibrium effect due to the change in aggregate environments of a local destination and countries
exporting to this destination.

50I use China Import and Export Custom Database funded by Cambridge Endowment for Research in Finance. Data are
available at the monthly frequency from 2000 to 2006. I aggregate these monthly series into quarterly frequency to accommo-
date the availability of macro series such as CPI index. Details of the database and its related descriptive statistics can be found
in the second chapter.
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various theoretical predictions.

Table 7: Dimensions of market shares

Measure Construction Abbreviation Notation

Classical Market Share
Vf di

∑ f Vf di
fdi di

Firm Share (DI)

Local Core Product Measure
Vf di

∑i Vf di
fdi fd

Product Share (FD)

Destination Importance at
Firm-product Level

Vf di
∑d Vf di

fdi fi
Destination Share (FI)

Global Firm Competitiveness ∑d Vf di
∑ f ∑d Vf di

fi i
Firm Share (I)

Global Core Product Measure ∑d Vf di
∑d ∑i Vf di

fi f
Product Share (F)

Destination Importance at
Product Level

∑ f Vf di
∑ f ∑d Vf di

di i
Destination Share (I)

Local Firm Competitiveness ∑i Vf di
∑ f ∑d Vf di

fd d
Firm Share (D)

Local Taste Preference ∑ f Vf di
∑ f ∑i Vf di

di d
Product Share (D)

Destination Importance within
Firm

∑i Vf di
∑d ∑i Vf di

fd f
Destination Share (F)

Third, this paper provides the first evidence that the underlying factors explaining unit value volatil-
ity and ERPT may be different. The price volatility is strictly decreasing in all market share measures,
while the relationship between ERPT and the market structure is nonlinear and varies depending on
the specific share measure. In addition, increasing the volatility of bilateral and multilateral exchange
rates, the volatility of destination CPI and the frequency of trade have ambiguous positive effects on
unit value volatility. The effects of these variables on ERPT are heterogeneous and highly nonlinear.
Interestingly, I find that both EPRT and unit value volatility are hump-shaped51 in a number of observed
trading periods.

4.1 Estimation procedure

The first two stages of the empirical procedure follow closely with the one introduced in section 3.1. In
addition, I explore and estimate the factors explaining the volatility of unit values and compare them to
the results on ERPT obtained in stage 2.

1. Stage 1:

(a) Identify a simple regression relationship between the dependent variable and observable in-
dependent variables based on economic theory.

log(pi, f ,d,t) = a + b ∗ log(pi, f ,d,t−1) + c ∗ log(ed,t)

51U-shaped from the importers’ perspective.
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(b) Identify dimensions to be fixed as {i, f , d, t, i f , id, f d, f t}. Run regressions and collect coeffi-
cients {ai, bi, ci, a f , b f , c f , ...}

(c) Create and select combinations of market share measures.52

Table 8: Classification of market share measures

Destination
Specific

Global Counterparts

Firm fdi di fd d & fi i

Product fdi fd fi f & di d

Destination fdi fi di i & fd f

(d) Estimate GBRT model with supervisor log(p f ,s,d,t) on the policy variable log(ed,t) and feature
variables53

X1 := log(oneerd,t), log(cpid,t), log(pi, f ,d,t−1),

fdi di, fdi fd, fdi fi, fd d, fi f, di i,

ai, bi, ci, a f , b f , c f , ....

and obtain fitted model1

(e) Numerical differentiation on predicted counterfactual bilateral exchange rates

pEst1
f ,s,d,t = model1(ed,t + 0.5σed ,X1)

pEst2
f ,s,d,t = model1(ed,t − 0.5σed ,X1)

ERPTEst
f ,s,d,t =

log(pEst1
f ,s,d,t)− log(pEst2

f ,s,d,t)

σed

2. Stage 2:
Estimate GBRT model with supervisor ERPTEst

i, f ,d,t on feature variables including volatilities of unit
values and three macro price indicators (bilateral nominal exchange rates, ONEER, Destination
CPI), two measures of firm-product-destination level characteristics (frequency of trade and ob-
served trading periods), 6 market share measures and controlling coefficients.

X2 := σpi, f ,d , σed , σoneerd , σcpid , Frequency of Tradesi, f ,d, Observed Trading Periodsi, f ,d

fdi di, fdi fd, fdi fi, fd d, fi f, di i,

ai, bi, ci, a f , b f , c f , ....

52Table 8 reclassifies the 9 economically meaningful measures. As these market share measures are interdependent, one can
find the minimal set of variables to represent the information of these 9 statistics. It can be shown that it is sufficient to include
three destination specific measures (fdi di, fdi fd, fdi fi) and the first column of global measures (fd d, fi f, di i).

53oneerd,t indicates the orthogonal destination NEER which is constructed using quarterly data by the same method intro-
duced in the second chapter.
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and obtain fitted model2.

3. Stage Volatility:
Estimate GBRT model with supervisor volatility of unit values, σpi, f ,d , on the same set of feature
variables as in stage 2 excluding σpi, f ,d

XVola := σed , σoneerd , σcpid , Frequency of Tradesi, f ,d, Observed Trading Periodsi, f ,d

fdi di, fdi fd, fdi fi, fd d, fi f, di i,

ai, bi, ci, a f , b f , c f , ....

and obtain fitted modelVola.

4.2 Main results

Deploying the algorithm on a real custom dataset is computationally demanding.54 At this stage, the
graphs are still sensitive to the economic equation relationship being assumed in step (a) of the first
stage and the feature variables entering the first and the second stages of the algorithm. The following
graphs summarise my preliminary findings.

54The cleaned dataset has a size around 5 Gigabytes. In the proposed method, a large number of estimated structural param-
eters need to be stored in the memory. As a result, it currently requires around 100 times the memory of the original dataset.
My codes are running on a computational cluster CamGrid [see http://help.uis.cam.ac.uk/supporting-research/research-
support/camgrid/camgrid] which allows me to have maximum 128 Gigabytes memory. The following result is based on a
sample of 5% randomly selected firms in the China’s Custom dataset.

The second practical issue is that the amount of computational resources needed increases exponentially with the size of the
dataset and the number of iterations to run. The computing time is mainly consumed in running cross validation simulations.
Ideally, the optimal number of iterations needs to be determined by the cross validation simulations. By increasing the number
of iterations, the within sample prediction error will always decrease but the cross validation error may or may not decrease
depending on whether the additional iteration improves the fit for all parallel sub-samples. The optimal number of iteration
is defined at the iteration where cross validation errors stop decreasing. However, due to computational time limits, I force
the program to stop at 50,000 iterations before the optimal iteration is reached. With a 5% sample and 50,000 iterations, the
program takes around 1 week to complete. As can be seen in table 9, the rate of the decreasing squared error loss is sufficiently
low at the 50,000th iteration.
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Table 9: Cross validation and relative importance
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Note: The left panel presents cross validations of 3 models. The green and black line represent the cross-validation prediction error and within-
sample prediction error respectively. The blue dashed line shows the optimal iteration indicated by cross validation errors. The right panel presents
feature variables’ contribution in error reduction. The supervisors in these three models are logged unit value, point estimate of ERPT and unit
value volatility respectively. Unit value persistence and survival periods are measured at firm-product-destination level proxied by the frequency of
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Table 10: Mapping firm-product-destination characteristics to ERPT (red) and unit value volatility (blue)
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Note: The x-axis of each graph represents the percentile of market share measures, e.g. 1.0 equals 100th percentile. The circled-dots
represent the estimated ERPT and unite value volatility respectively. The dashed coloured line represents the smoothed version using
second order polynomials. A pass through value of 0.05 means that the RMB price goes up by 0.05% in reaction to a 1% bilateral exchange
rate shock, i.e. a 95% destination country pass through. The median of the standard deviation of logged unit values at firm-product-
destination level is around 0.36.
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Table 11: Mapping firm-product-destination characteristics to ERPT (red) and unit value volatility (blue)
(cont.)
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Note: The x-axis of the graphs for the three volatility measures represents the standard deviation of logged macro price indicators. The
x-axis of the group for the frequency of trade represents the period gap (in quarters) between two observations at the firm-product-
destination level. The x-axis of the bottom two graphs represents the total number trade records observed in the sampling period at the
firm-product-destination level. The circled-dots represent the estimated ERPT and unit value volatility respectively. The dashed coloured
line represents the smoothed version using second order polynomials. A pass through value of 0.05 means that the RMB price goes up by
0.05% in reaction to a 1% bilateral exchange rate shock, i.e. a 95% destination country pass through. The median of the standard deviation
of logged unit values at firm-product-destination level is around 0.36.
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5 Conclusion

This paper differs from existing methodologies in emphasizing a holistic approach to estimating ERPT
and proposes a machine learning algorithm to study the heterogeneity in ERPT at firm-level.

The core of the proposed algorithm consists of two elements. First, I find that the fact that tree based
algorithms are robust to monotonic transformations of its feature variables can be exploited to control for
unobserved components. Second, in a multi-dimensional panel, estimates from structural estimations in
a range of limited-dimensional spaces can help to restrain the behaviour of unobserved components.

This paper extends Atkeson and Burstein (2008) and builds a multi-sector multi-country model to
study how markets reach equilibrium under Cournot competition. From the simulated model, I con-
struct a dataset that resembles available information in the real custom database to test the performance
of the algorithm under complicated scenarios. The proposed method shows an extremely high accuracy
rate on estimating firm-level ERPT and approximating the relationship between ERPT and the destina-
tion market share.

Applying the algorithm to China’s custom data from 2000-2006, this paper documents new evidence
on the relationships among various market share measures, firm-product-destination characteristics,
unit value volatility and ERPT.

36



A Introduction to Classification And Regression Tree and Gradient Boost-
ing Models

Classification And Regression Tree (CART)55, a method of supervised learning, is a recursive binary
splitting algorithm producing nonparametric mapping functions from independent variables (feature
variables) to the dependent variable. Depending on the type of the dependent variables, tree based
models are divided into classification trees (discrete dependent variable) and regressions trees (contin-
uous dependent variable). Tree based methods are excellent at accommodating interactions between
variables and complex nonlinear structures as well as handling outliers and missing observations. Mod-
ern decision tree algorithms are introduced by Breiman et al. (1984) and Friedman, Hastie and Tibshirani
(2001).

In a decision tree algorithm, the dataset is binary partitioned sequentially until certain stop criterion
has been met. At each partition, the algorithm will search all possible splits for all feature variables and
select the split that minimises the prediction error. The procedure of a basic decision tree algorithm is
given as follows:

MPE = ∑
τ∈leaves(T)

∑
i∈τ

h(y−mc)

mc =
1
nc

∑
i∈τ

pi

A decision tree algorithm recursively binary splits/partitions data at the point which minimises the
mean prediction error (MPE) measured by criteria h(.)56. (1) The algorithm starts a tree of single node
containing all points. If all the points in the node have the same value for all the input variables, stop.
(2) Search over all binary splits of all variables for the one which reduces MPE as much as possible. If
the largest decrease in MPE is below some threshold, or one of the resulting nodes contains fewer than q
points, stop. Otherwise, take that split, creating two new nodes. (3) In each new node, go back to step 1.

Figure 5 shows the results from applying CART to analyse the factors explaining the variation in
export prices (unit values at firm-product level) of China’s exporters. Entered feature/explanatory vari-
ables include the quantiles of market shares57, logged real bilateral exchange rate, frequency of unit
value adjustment at firm-product-destination level, number of observed trading periods and number
of exporting destinations (during the period 2000-2006) at firm level. As can be seen from figure 5, the
first split is made at the quantile of market shares. The algorithm predicts a higher average unit value
for firms with high market shares among Chinese exporters. After the first split, several more splits are
made sequentially in each subgroup based on other feature/explanatory variables. There is an interest-
ing pattern for the last set of splits made for the left branch (market share quantile < 0.66) and the right

55A commonly used alias is “decision tree” algorithm. In my following discussions, I will refer to this algorithm as “decision
tree” algorithm or tree based algorithm.

56Commonly used functions include h(.) = |pi −mc| and h(.) = (pi −mc)2.
57I use the classical market share measure at firm-product-destination level≡ ∑t Vi, f ,d,t

∑ f ∑t Vi, f ,d,t
calculated among China’s exporters.
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Figure 5: Predicting export unit values
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Note: Calculation is based on quarterly data of China’s import and export database 2000-2006. Unit values are measured in
US dollars. The number in the circled note represents the average unit value of the classified group. The percentage below
the number shows the proportion of data (counted by number of observations) located in this classification. Light (dark) blue
indicates low (high) average unit values.

branch (market share quantile ≥ 0.66). The left branch suggests that the unit value variation is mostly
explained by market share and real exchange rates variations for those firm-product combinations with
small market shares, whereas the right branch suggests that other firm-product characteristics, such as
the number of exported destinations and the frequency of price adjustments, start to play a role after the
first few splits for those firm-product combinations with large market shares58.

There are three advantages of tree based algorithms.
First, the binary splitting rule represents a natural decision-making process and the resulting tree

structure is easy to understand and interpret.
Second, the recursive binary splitting feature makes decision tree methods a natural nonlinear esti-

mator. Interactions between variables are accounted from the sequential feature of the partition process
as the next partition depends on the previous partitions being made. “Trees tend to work well for prob-
lems where there are important nonlinearities and interactions.” Tree based algorithms can discover
nonlinear patterns that conventional econometric methods may fail to detect. More discussions can be
found in Varian (2014).

Third, tree based models are robust to certain types of outliers and irregularities of data. Due to
the binary splitting structure, only ordinal information of explanatory variables is used. Therefore, the
resulting tree structure is robust to monotonic transformation of the explanatory variables. As discussed

58Please note that these results represent statistical relationships between variables only. As these classifications are not
conditional on the characteristics of firms, products, destination competition environments, no further economic inference
should be made based on these results.
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in subsection 2.2, this property can be exploited to control for unobserved variables.
Given these advantages, empirically applying a decision tree algorithm also has various problems.

First, finding the optimal decision tree in a large dataset is computationally difficult59. Second, practical
decision tree solutions often lead to a local rather than global optimisation. Third, the algorithm is
sensitive to small changes of the ordinal structure of explanatory variables. The resulted tree structure is
often sensitive to its initial splits. More details and discussions of tree based algorithms can be found in
Rokach and Maimon (2005).

The above problems can be overcome by various machine learning techniques including bagging,
stacking, model averaging, random forest and boosting, etc.60 The gradient boosting model, introduced
by Friedman (2002)61, is one of the most effective algorithms.

The boosting algorithm is based on the idea that adaptively integrating many small models can
achieve and even outperform the predictive power of a single big model. Gradient boosting regression
tree (GBRT) algorithm combines elements of gradient boosting and decision tree algorithms. In GBRT,
trees are grown sequentially: each tree is grown conditional on the classification from previously grown
trees. Adding the boosting procedure makes tree based models more robust, less path dependent and
easy to work with large datasets.

The procedure of a workhorse GBRT algorithm is given as follows. A GBRT algorithm is a numer-
ical optimisation technique with the objective to find the mapping f (x) to minimise the expected loss
function Ψ by sequentially adding a new tree that best reduces the gradient of the loss function:

f̂ (x) = arg min
f (x)

Ey,xΨ(y, f (x)) (15)

The algorithm starts by initialising f̂ (x) to be a constant and iterating the following steps until reach-
ing the specified Itermax.

1. Compute the negative gradient as the working response

hi = −
∂

∂ f (xi)
Ψ(pi, f (xi))

∣∣∣∣
f (xi)= f̂ (xi)

(16)

2. Randomly select a fraction bf from the dataset (Random Forest/Bagging)

3. Fit a regression tree with inter.depth splits , g(x), predicting hi from the covariates xi.

4. Update the estimate of f (x) as
f̂ (x)→ f̂ (x) + lr ∗ g(x) (17)

5. Repeat step 1-4 until Itermax

59There have been papers proving that finding an optimal decision tree from a given data is NP-hard or NP-complete under
different scenarios. See Hyafil and Rivest (1976) and Hancock et al. (1996)

60See Breiman (1996) and Breiman (2001)
61Freund and Schapire (1996) developed the first two-class boosting classification algorithm called AdaBoost.
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Φ iter inter.depth lr bf

Benchmark Normal
Cross

Validation
8 0.01 0.5

Robustness - 50,000 1-10
0.005,
0.001

0.3, 1

A GBRT model is calibrated with four parameters.62 First, the bagging fraction, bf.63 Second, a
parameter controls the depth of interactions between variables, inter.depth. Third, the shrinkage or
the learning rate, lr controls the weight of each iteration and a higher value means a quicker convergence
rate. Fourth, the distribution Φ of the error term defines the loss function Ψ.64

The optimal number of iterations is often selected by the cross validation process. The model is
first run with large number of iterations and the best iteration iter is then selected with k-fold cross
validations.

It is worth noticing that the difference in ideology of modeling between machine learning and eco-
nomic models. Economic and most econometric models start with structural assumptions reflecting
economists understanding of how the world operates. Machine learning models, on the other side,
assume that the true data-generating process is infinitely complex and all variables in the model are cor-
related in a nonlinear manner. Machine learning approaches try to maximally recover the ground truth
by appointing a learning algorithm (a classier) to learn the relationship between variables. More specifi-
cally, the objective of a learning algorithm is to recover patterns among variables with the performance
evaluated by prediction/classification errors in a given dataset. The cost of such non-parametric ideol-
ogy of machine learning approaches is data driven, i.e. the ability of an algorithm to describe the ground
truth of the world depends critically on the quality of data being supplied. If an important variable is
not observed in the dataset, conventional machine learning approaches fail to capture the information in
this variable and the resulting model is less satisfactory. In this aspect, it is worth designing an approach
to integrate structural economic models and machine learning algorithms.

62Elith, Leathwick and Hastie (2008) provide a good introduction for modeling tuning practices. Ridgeway (2007) provides
a good guidance on modeling tuning for the gbm package in R.

63This parameter helps to ensure the robustness of the model and prevents overfitting. The conventional value is 0.3− 0.5.
64For example, Gaussian implies a squared error loss function.
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B Proof of Proposition 1 and Simulations of Example 1

Proof of Proposition 1. The first split is made at the point m1. This implies

1
|{i : ai ≤ am1}|

∑
i:ai≤am1

g[ f (ai)−
∑i:ai≤am1

f (ai)

|{i : ai ≤ am1}|
] +

1
|{i : ai > am1}|

∑
i:ai>am1

g[ f (ai)−
∑i:ai>am1

f (ai)

|{i : ai > am1}|
]

<
1

|{i : ai ≤ aq}| ∑
i:ai≤aq

g[ f (ai)−
∑i:ai≤aq

f (ai)

|{i : ai ≤ aq}|
] +

1
|{i : ai > aq}| ∑

i:ai>aq

g[ f (ai)−
∑i:ai>aq

f (ai)

|{i : ai > aq}|
] ∀q 6= m1

(18)

where g(.) is a loss function. Let {bn} = k({an}).

aj > ai ⇒ bj > bi ∀i, j ∈ {1, ..., N} implies

{i : ai < aj} ⊆ {i : bi < bj} and {i : ai > aj} ⊆ {i : bi > bj} ∀j ∈ {1, ..., N} (19)

Suppose that the transformation {bn} falls into the first category that aj > ai ⇒ bj > bi ∀i, j ∈
{1, ..., N} and the first optimal splitting point of {bn} is bm∗1 . As the splitting criterion only uses the
ordinal information, it can be written as

1
|{i : bi ≤ bm∗1}|

∑
i:bi≤bm∗1

g[ f (ai)−
∑i:bi≤bm∗1

f (ai)

|{i : bi ≤ bm∗1}|
] +

1
|{i : bi > bm∗1}|

∑
i:bi>bm∗1

g[ f (ai)−
∑i:bi>bm∗1

f (ai)

|{i : bi > bm∗1}|
]

<
1

|{i : bi ≤ bq}| ∑
i:bi≤bq

g[ f (ai)−
∑i:bi≤bq

f (ai)

|{i : bi ≤ bq}|
] +

1
|{i : bi > bq}| ∑

i:bi>bq

g[ f (ai)−
∑i:bi>bq

f (ai)

|{i : bi > bq}|
] ∀q 6= m∗1

(20)

I want to prove m1 = m∗1 .
(18) and (20) imply

{i : ai < am1} = {i : bi < bm∗1} (21)

{i : ai > am1} = {i : bi > bm∗1} (22)

(19) implies

{i : ai < am1} ⊆ {i : bi < bm1} and {i : ai < am∗1} ⊆ {i : bi < bm∗1} (23)

{i : ai > am1} ⊆ {i : bi > bm1} and {i : ai > am∗1} ⊆ {i : bi > bm∗1} (24)

41



(21) and (23), and (22) and (24) imply

{i : ai < am∗1} ⊆ {i : bi < bm∗1} = {i : ai < am1} ⊆ {i : bi < bm1} (25)

{i : ai > am∗1} ⊆ {i : bi > bm∗1} = {i : ai > am1} ⊆ {i : bi > bm1} (26)

From which, it can be derived that am1 = am∗1 and bm1 = bm∗1 . Because

{i : ai < am∗1} ⊆ {i : ai < am1} ⇒ am∗1 ≤ am1 (27)

{i : ai > am∗1} ⊆ {i : ai > am1} ⇒ am∗1 ≥ am1 (28)

(25) and (26) can be simplified as

{i : ai < am∗1} = {i : bi < bm∗1} = {i : ai < am1} = {i : bi < bm1} (29)

{i : ai > am∗1} = {i : bi > bm∗1} = {i : ai > am1} = {i : bi < bm1} (30)

which implies

{i : ai = am1} = {i : ai = am∗1} (31)

By the uniqueness of m1, we have (from 18)

{i : ai > am1} 6= {i : ai > aq} ∀q ∈ {1, ..., N} 6= m1 (32)

Therefore,

m1 = m∗1 (33)

The case where the transformation {bn} falls into the second category that aj > ai ⇒ bj < bi ∀i, j ∈
{1, ..., N} can be proved following a similar procedure. Recursively applying this argument to the rest
of splitting points am2 , ..., amk completes the proof.

Remark. Intuitively, since a binary splitting algorithm only uses ordinal information of an explana-
tory variable in its splitting criteria, any transformation that preserves the ordinal information of this
explanatory variable should result in the same splitting points.
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Figure 6: Simulation of example 1: the ordered case
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Figure 7: Simulation of example 1: the randomly assigned case
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(c) Add Mi

where Mi = −|ε| if βd = 0 and Mi = |ε| if βd = 1 ε;∼ N(0, 1)
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(d) Add true βd
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Figure 8: Simulation of example 1: the property of weak monotonic transformation
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Figure 9: Simulation of example 1: the property of weak monotonic transformation; increase n to 2,000
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C An Analytical Discussion of Simple Cases of the Two Dimensional Ex-
ample

The key issue here is to understand how and when adding estimated parameters from structural esti-
mations can help to control for the unobserved variables and estimate βd,t. In the following subsection, I
will discuss a simple case where the unobserved variable does not appear in the outer part of the equa-
tion of pd,t.65 For the data generating process given in equation (34) and (35), I want to estimate how the
price pd,t changes under an exchange rate ed,t shock conditioning on values of Mt and Xd,t. However,
Mt is unobserved. The objective is to understand how and when conditioning on values of coefficients
b0

t , b1
t , b0

d, b1
d and Xd,t could achieve the same result as conditioning on values of Mt and Xd,t.

pd,t = βd,ted,t (34)

βd,t = f (Xd,t, Mt) (35)

In the following discussion, I will try to express the true βd,t as a function of regression estimated
coefficients.66 In order to be clear about the information contained in estimated regression coefficients, I
take first order approximations to decompose the data generating process into factors that only vary in
one dimension. With this approximation, I will be able to obtain analytical solutions expressing values
of b1

t and b1
d as βd,t.67 The gain in efficiency by adding coefficients versus using the indices will depend

on the complexity of the hidden function implied by estimated coefficients versus the complexity of the
hidden function implied by indices.

The coefficients of obtained from step 1 can be written as:

b1
t = ∑

i
βd,twd,t b1

d = ∑
t

βd,tωd,t (36)

wd,t :=
ed,t(ed,t − et)

∑i(ed,t − et)2 ωd,t :=
ed,t(ed,t − ei)

∑t(ed,t − ei)2 (37)

where et = ∑i ed,t/nI with nI being the number of observations at dimension i.68 As I will illustrate
below, by conditioning on b1

t and b1
d, I am essentially conditioning on values of βd,t with a particular

weight.
Case A: If weights wd,t = 1/nI and ωd,t = 1/nT and βd,t can be approximated by βd,t = vd + vt + vd ∗

vt, then βt = vd(1 + vt) and βd = (vd + 1)vt, where vt := ∑t vt/nT.

65In this simple case, I only need to make counterfactual predictions of pd,t changing ed,t conditioning on the value of βd,t.
When the unobserved variable Mouter

t does appear in the outer part of the equation of pd,t, I will need to make predictions
conditioning on the values of both βd,t and Mouter

t . In general, the missing component in the inner part of βd,t and the outer
part Mouter

t need not take the same functional form nor the same value.
66More formally, I should define a multi-dimensional monotonic transformation measure. I leave this task for my future

work.
67In this simple case, I only need to use information provided by b1

t and b1
d. b0

t and b0
d will be used in more complicated cases

as in subsection C.1.
68I assume that the panel is balanced. I use notations nI and nT rather than the conventional N and T.
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b1
t

vd
∗

b1
d

vt
− 1 = vd + vt + vd ∗ vt = βd,t (38)

Case B: If βd,t = vd + vt + vd ∗ vt but wd,t 6= 1/nI and ωd,t 6= 1/nT, then

b1
t = ∑

i
(vd + vt + vd ∗ vt)wd,t = ∑

i
vdwd,t + vt(∑

i
wd,t + ∑

i
vdwd,t) (39)

b1
d = ∑

t
(vt + vd + vd ∗ vt)ωd,t = ∑

t
vtωd,t + vd(∑

t
ωd,t + ∑

t
vtωd,t) (40)

Notice ∑t vtωd,t = 0 and ∑i vdwd,t = 0
This is still too abstract. Let ed,t = kt + kd + kd ∗ kt. Then et = ∑i(kt + kd + kd ∗ kt)/nI and (ed,t− et)2 =

[kd − kI + (kd − kI) ∗ kt]2.

b1
t =

∑i(vd + vt + vd ∗ vt)(kt + kd + kd ∗ kt)[kd − kI + (kd − kI) ∗ kt]

∑i[kd − kI + (kd − kI) ∗ kt]2

= vt + (1 + vt)
∑i vd(kt + kd + kd ∗ kt)[kd − kI + (kd − kI) ∗ kt]

∑i[kd − kI + (kd − kI) ∗ kt]2
(41)

b1
d =

∑t(vd + vt + vd ∗ vt)(kt + kd + kd ∗ kt)[kt − kT + (kt − kT) ∗ kd]

∑t[kt − kT + (kt − kT) ∗ kd]2

= vd + (1 + vd)
∑t vt(kt + kd + kd ∗ kt)[kt − kT + (kt − kT) ∗ kd]

∑t[kt − kT + (kt − kT) ∗ kd]2
(42)

Define sample conditional covariance measures as69:

Covd(xd,t, zd,t) := ∑
i
(xd,t − xt)(zd,t − zt)/nI (43)

Vari(xd,t) := Covd(xd,t, xd,t) (44)

From the relationship ∑i xd,tzd,t/nI = Covd(xd,t, zd,t) + ∑i xd,t ∑i zd,t/n2
I , b1

t and b1
d can be rewritten as:

b1
t = [vt + (1 + vt)vd] + (1 + vt)

Covd{vd, (kt + kd + kd ∗ kt)[kd − kI + (kd − kI) ∗ kt]}
Vari(kd − kI + (kd − kI) ∗ kt)

(45)

b1
d = [vd + (1 + vd)vt] + (1 + vd)

Covt{vt, (kt + kd + kd ∗ kt)[kt − kT + (kt − kT) ∗ kd]}
Vart[kt − kT + (kt − kT) ∗ kd]

(46)

69These definitions are used to simplify my notation only and may not be a consistent measure of conditional covariance.
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Equations (45) and (46) can be expressed as70:

b1
t = [vt + (1 + vt)vd] + (1 + vt)

Covd[vd, (ed,t − et)2]

Vari(ed,t − et)2 (47)

b1
d = [vd + (1 + vd)vt] + (1 + vd)

Covt[vt, (ed,t − ei)
2]

Vart(ed,t − ei)2 (48)

The last part can be further simplified as

Covd[vd, (ed,t − et)2]

Vari(ed,t − et)2 =
Covd[vd, (kd − kI)2]

Vari(kd)
=: c1 (49)

Covt[vt, (ed,t − ei)
2]

Vart(ed,t − ei)2 =
Covt[vt, (kt − kT)2]

Vart(kt)
=: c2 (50)

In this example, due to the simple factorisation of ed,t, I assume that the last part is a constant and
does not vary along the other dimensions. This property no longer holds in a more general factorisation
process, e.g. ed,t = k1

t + k1
d + k1

dk2
t .

In general, I discuss three possibilities here:
Case B.1: If Covd[vd, (ed,t − et)2] = 0 and Covt[vt, (ed,t − ei)

2] = 0, the true βd,t can be expressed as a
simple nonlinear equation of b1

t and b1
d as in Case A.

Case B.2: If Covd[vd, (ed,t − et)2] 6= 0 and Covt[vt, (ed,t − ei)
2] 6= 0, but Vart

{
Covd[vd,(ed,t−et)2]

Vari(ed,t−et)2

}
= 0 and

Vari

{
Covt[vt,(ed,t−ei)

2]
Vart(ed,t−ei)2

}
= 0, vd and vt can be written as follows:

b1
t = vt + (1 + vt)(vd + c1) (51)

b1
d = vd + (1 + vd)(vt + c2) (52)

vt =
b1

t − (vd + c1)

1 + (vd + c1)
(53)

vd =
b1

d − (vt + c2)

1 + (vt + c2)
(54)

It is clear that βd,t can be expressed as a nonlinear function of b1
t and b1

d.

Case B.3: If Covd[vd,(ed,t−et)2]
Vari(ed,t−et)2 6= c1 and Covt[vt,(ed,t−ei)

2]
Vart(ed,t−ei)2 6= c2 but Vart

{
Covd[vd,(ed,t−et)2]

Vari(ed,t−et)2

}
and Vari

{
Covt[vt,(ed,t−ei)

2]
Vart(ed,t−ei)2

}
are very small, the weak monotonic property will make it work.

This exercise gives me two interesting insights. First, variances of the bias at the other dimension
matter. As long as the bias of estimated parameters at one dimension is “well-structured” in the other
dimension, adding these estimated parameters will help to estimate the desired βd,t.

Second, it is the covariance between elements driving βd,t and a local measure of second moments

70Hint: rewrite kt + kd + kd ∗ kt = [kd − kI + (kd − kI) ∗ kt] + [kt + kI + kIkt]
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of the policy variable (ed,t − et)2 and (ed,t − ei)
2 that matters. Due to the linear regression structure, first

order terms are filtered out and only second order terms will influence the bias. This is a very useful
property for economics studies. Taking this property into the context of my empirical ERPT question,
exchange rates may be correlated with the marginal cost of the exporter71, but it is less likely for the
volatility of exchange rates to be correlated with the level movement of the marginal cost of the exporter.
Even if these two terms are correlated, as long as the correlations (as a function of d) do not change
systematically across destinations, estimated parameters b1

t and b1
d will provide useful information which

can be analysed through a tree based machine learning algorithm.
In general, adding estimated parameters from regressions and/or other structural estimations from

a range of dimension-limited partition spaces should always be more efficient than adding indices i and
t or dummies related to the indices provided that the assumed structural equation is not very far from
the true specification.

C.1 The case where Mt appears in the outer part of the linear form

In this subsection, I discuss the case where Mt appears in the outer part of the linear form. As not only
βd,t but also Mt need to be backed up from the estimated parameters, I also need to use information from
b0

t and b0
d.

pd,t = βd,ted,t + Mt

βd,t = f (Xd,t, Mt)

Regression estimated parameters can be written as

b1
t =

∑i[ f (Xd,t, Mt)ed,t + Mt](ed,t − et)

∑i(ed,t − et)2

= ∑
i

βd,twd,t + Mt

b0
t = ∑

i
(pd,t − b1

t ∗ ed,t)/nI

= ∑
i
(βd,t −∑

i
βd,twd,t)ed,t/nI + Mt(1−∑

i
ed,t/nI)

b1
d =

∑t[ f (Xd,t, Mt)ed,t + Mt](ed,t − ei)

∑t(ed,t − ei)2

= ∑
t

βd,tωd,t + ∑
t

Mt
ωd,t

ed,t

b0
d = ∑

t
(pd,t − b1

d ∗ ed,t)/nT

= ∑
t
(βd,t −∑

t
βd,tωd,t)ed,t/nT + ∑

t
Mt(1−ωd,t)/nT

71For example, the exporter may use imported inputs.
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To visualise the underlying structure of these estimated parameters, I take the following first order fac-
torisation. Let

ed,t = kt + kd + kd ∗ kt

βd,t = vd + vt + vd ∗ vt

Mt = mt

Therefore,

b1
t = [vt + (1 + vt)vd] + (1 + vt)

Covd[vd, (ed,t − et)2]

Vari(ed,t − et)2 + mt (55)

b1
d = [vd + (1 + vd)vt] + (1 + vd)

Covt[vt, (ed,t − ei)
2]

Vart(ed,t − ei)2 +
Covt(mt, ed,t)

Vart(ed,t − ei)2 (56)

b0
t = Covd[βd,t, ed,t]− (

Covd[βd,t, (ed,t − et)ed,t]

Vari(ed,t − et)
+ Mt)et + Mt (57)

where I have used the following relationship in deriving the expression of b0
t .

∑
i
[βd,t(ed,t − et)ed,t]/nI = Covd[βd,t, (ed,t − et)ed,t] + ∑

i
βd,t ∑

i
[(ed,t − et)

2]/n2
I (58)

With the assumed factorisation,

Covd[βd,t, ed,t] = (1 + vt)(1 + kt)Covd(vd, kd) (59)

Covd[βd,t, (ed,t − et)ed,t] = (1 + vt)(1 + kt)
2Covd[vd, (kd − kI)2] (60)

Covd[βd,t, (ed,t − et)ed,t]

Vari(ed,t − et)
= (1 + vt)

Covd[vd, (kd − kI)2]

Vari(kd)
=: (1 + vt)c1 (61)

This is where it becomes complicated. The expression of b0
t now involves a time-varying factor kt of the

observed policy variable ed,t.

b0
t = (1 + vt)(1 + kt)Covd(vd, kd)− [(1 + vt)c1 + mt](kt + ktkI + kI) + mt (62)

Covd(vd, kd), c1, kI , vd, vt are constants. This leaves vt, vd, mt, kt to be solved in 3 equations (55), (56) and
(62). The tricky part to figure out is how and when the conditional weak monotonic transformation
property in proportion 2 works in this case.

If I derive the expression of b0
d, it would involve vd, kd. Together with ed,t, (55), (56) and (62), there

are 5 equations with 5 unknowns vt, vd, mt, kd, kt. If this problem can be solved approximately, the effi-
ciency gain in adding these estimated parameters should depend on the complexity of these equations
compared to the complexity of hidden functions of using indices or related dummies.

Note that I discussed a general case here where the unobserved variable Mt needs not necessarily be
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correlated with βd,t.72 If βd,t can be expressed as an explicit function of Mt and some observed variables,
the derivation will be easier.

72I did not impose any restrictions on mt and vt.
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C.2 Tests on alternative specifications

C.2.1 High Nonlinearity

Setting:

pd,t = 10 + βd,ted,t + msd,t −mct + εd,t

βd,t = (msd,t − 0.5)2 + sin(1000mct)mct

msd,t = ud,t + 0.1ed,t

mct = ut − 0.1et

et =
∑d ed,t

nd

nd = 2000; nt = 40

ud,t ∼N(0, 1), ut ∼ N(0, 1), εd,t ∼ N(0, 0.01)

Figure 10: High nonlinearity: the proposed algorithm

ms

-3 -2 -1 0 1 2 3

-2

0

2

4

6

8

b
e
ta

Estimated 0.7q

Reverse Engineered

True

Estimated 0.3q

Estimated 0.5q

First 50 observations

0 10 20 30 40 50

0

5

10

b
e
ta

EstimatedTrue

SSR = 5670.88, Error Rate = 1.26%

53



C.2.2 Not Identifiable

Setting:

pd,t = 10 + βd,ted,t + msd,t −mcd,t + εd,t

βd,t = (msd,t − 0.5)2 + mcd,t

msd,t = ud,t + 0.1ed,t

mcd,t = ud,t − 0.1ed,t

nd = 2000; nt = 40

ud,t ∼N(0, 1), ut ∼ N(0, 1), εd,t ∼ N(0, 0.01)

Figure 11: Not identifiable: the proposed algorithm
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C.2.3 Larger Correlation

Setting:

pd,t = 10 + βd,ted,t + msd,t −mct + εd,t

βd,t = (msd,t − 0.5)2 + mct

msd,t = ud,t + 0.1ed,t

mct = ut − 1et

et =
∑d ed,t

nd

nd = 2000; nt = 40

ud,t ∼N(0, 1), ut ∼ N(0, 1), εd,t ∼ N(0, 0.01)

Figure 12: Larger correlation: the proposed algorithm
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C.2.4 Different Function of the Outer Part

Setting:

pd,t = 10 + βd,ted,t + msd,t −mc2
t + εd,t

βd,t = (msd,t − 0.5)2 + mct

msd,t = ud,t + 0.1ed,t

mct = ut − 0.1et

et =
∑d ed,t

nd

nd = 2000; nt = 40

ud,t ∼N(0, 1), ut ∼ N(0, 1), εd,t ∼ N(0, 0.01)

Figure 13: Different function of the outer part: the proposed algorithm
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C.2.5 Arellano and Bond

Setting:

pd,t = 0.95pd,t−1 + βd,ted,t + msd,t −mct + εd,t

βd,t = (msd,t − 0.5)2 + mct

msd,t = ud,t + 0.1ed,t

mct = ut − 0.1et

et =
∑d ed,t

nd

nd = 2000; nt = 40

ud,t ∼N(0, 1), ut ∼ N(0, 1), εd,t ∼ N(0, 0.01)

Figure 14: Arellano and Bond: the proposed algorithm
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C.2.6 Reduce Sample Size

Setting:

pd,t = 10 + βd,ted,t + msd,t −mct + εd,t

βd,t = (msd,t − 0.5)2 + mct

msd,t = ud,t + 0.1ed,t

mct = ut − 0.1et

et =
∑d ed,t

nd

nd = 200; nt = 40

ud,t ∼uni f orm, ut ∼ uni f orm, εd,t ∼ N(0, 0.01)

Figure 15: Reduce sample size: dummies
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Figure 16: Reduce sample size: the proposed algorithm
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D Details of the Simulated Model

Figure 17: Responses of firms in country A to an appreciation in country B

A B C

0.00

0.25

0.50

0.75

1.00

4 6 8 10 4 6 8 10 4 6 8 10
Price

D
en

si
ty time

after

before

A B C

0

2

4

6

0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6
Market Share

D
en

si
ty time

after

before

Note: The left column presents the change of prices and market shares for domestic firms in country A. The middle and

right columns present the reactions of exporters from country B and C respectively.
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Figure 18: Visualisation of simulated firms in country A
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Note: The top graph depicts the realised productivity of firms in country A. In each sector, there are three domestic firms and two foreign firms

from country B and C respectively (only the best firm in each sector exports). The bottom two graphs depict the price and market shares of

firms in country A. Exporters are firms with relatively high productivity and charge relatively low prices and own larger market shares. The

assumption that only the best firms export gives a realistic market structure in this multi-country world.
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D.1 Case 1: only exchange rate shocks

Figure 19: Case 1: Precision on price predictions
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Figure 20: Case 1: Without adding regression coefficients
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Figure 21: Case 1: Point estimates of the proposed algorithm compared to true counterfactual environ-
ments
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D.2 Case 2: adding productivity shocks

Figure 22: Case 2: Precision on price predictions
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Figure 23: Case 2: Point estimates of the proposed algorithm compared to true counterfactual environ-
ments
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Figure 24: Comparing naive, counterfactual and algorithm predicted ERPT estimates
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Note: Firm’s productivity is assumed to follow an AR(1) process with a persistence of 0.95. The red line presents the ERPT
estimates calculated using actual price changes of the simulated model. The green line represents the model implied
ERPT estimates in a counterfactual equilibrium where there is no productivity shock in the next period. The black line
represents ERPT estimates predicted by the proposed algorithm.
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Algorithm 1 The Proposed Algorithm
Input data I, y, X, e

1: Obtain variable names of the index matrix I and the feature variable matrix X and save them as inames
and xnames respectively.

2: Calculate all non-repetitive combinations of dimension indices in inames and save as Si.
3: for s in Si do
4: Is ← I[inames ∈ s]
5: Ĩs ← unique(Is)
6: for x in xnames do
7: xs ← 0
8: for is in 1 to nrow(̃Is) do
9: xs[Is = Ĩ[is]]← mean(x|Is = Ĩ[is])

10: end for
11: end for
12: end for
13: Calculate all non-repetitive binary combinations of Si and save as Sshare.
14: for s in Sshare do
15: (sa, sb)← s[sort(length(s[1], s[2]))]
16: for x in xnames do
17: xsa,sb ←

xsa
xsb

18: end for
19: end for
20: Observe dimensions in which the supervisor y and the policy/treatment variable e vary. Identify a

subset available for controlling unobserved variables and save as Sid.
21: for s in Sid do
22: Assume a possible (linear) structural equation based on economic rationale.
23: for j in 1:(number of parameters in the structural model) do
24: coe f j

s ← 0
25: end for
26: for ds in 1 to nrow(̃Is) do
27: Estimate the structural regression for the subset of data where Is = Ĩ[is]
28: for j in 1:(number of parameters in the structural model) do
29: coe f j

s [Is = Ĩ[is]]← parameterj

30: end for
31: end for
32: end for
33: Run GBRT with supervisor y on e, X, Xsa,sb , coefj

id and obtain model1.
34: yEst1 ← model1(e− 0.5std(e, X, Xs, coefj

s)

35: yEst2 ← model1(e + 0.5std(e), X, Xs, coefj
s)

36: betaEst ← yEst2−yEst1

std(e)

37: Run GBRT again with supervisor betaEst on e, X, Xsa,sb , coefj
id and obtain model2.

Output: model1, model2, betaEst
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